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Preface

 
In this book, we introduce readers to the main techniques of statistical analysis
employed by psychologists and sociologists. However, we do not see the book
as a standard introduction to statistics. We see the book as distinctively
different because we are not concerned to introduce the often complex
formulae that underlie the statistical methods covered. Students often find
these formulae and the calculations that are associated with them extremely
daunting, especially when their background in mathematics is weak. Moreover,
in these days of powerful computers and packages of statistical programs, it
seems gratuitous to put students through the anxiety of confronting complex
calculations when machines can perform the bulk of the work. Indeed, most
practitioners employ statistical packages that are run on computers to perform
their calculations, so there seems little purpose in treating formulae and their
application as a rite de passage for social scientists. Moreover, few students
would come to understand fully the rationale for the formulae that they would
need to learn. Indeed, we prefer the term ‘quantitative data analysis’ to
‘statistics’ because of the adverse image that the latter term has in the minds of
many prospective readers.

In view of the widespread availability of statistical packages and computers,
we feel that the two areas that students need to get to grips with are how to
decide which statistical procedures are suitable for which purpose, and how to
interpret the ensuing results. We try to emphasize these two elements in this
book.

In addition, the student needs to get to know how to operate the computer
and, in particular, how to use computer software needed to perform the
statistical procedures described in this book. To this end, we introduce students
to what is probably the most widely used suite of programs for statistical
analysis in the social sciences—the Statistical Package for the Social Sciences
(SPSS). This package was first developed in the 1960s and was the first major
attempt to provide software for the social scientist. It has since undergone
numerous revisions and refinements. The first two editions of this book
(Bryman and Cramer 1990, 1994) dealt with versions of SPSS that were
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xvi Preface

designed for mainframe computers or for the Microsoft operating system MS-
DOS. A few years ago, a version of SPSS was developed to operate within the
widely used Microsoft Windows environment. This too has undergone a number
of revisions. The previous edition of this book (Bryman and Cramer 1997) was
concerned with Release 6 for Windows which was designed for Microsoft
Windows 3.11. After the introduction of Windows 95, a new release of SPSS
(Release 7) was designed to run on this operating system. The latest version for
Windows 95 is Release 8 (SPSS 1998). The present book describes the use of
Release 8, which we shall refer to for short as SPSS unless otherwise indicated.
Users of Releases 7 and 7.5 will find the version that we describe in this book
more useful and familiar to them than that described in Bryman and Cramer
(1997), which was Release 6.

In order to distinguish methods of quantitative data analysis from SPSS
commands, the latter are always in bold. We also present some data that
students can work on and the names of the variables are also in bold (e.g.
income). The data sets can be copied from the Routledge website on the Internet
at the following address:

http://www.routledge.com/routledge/textbooks/titles/quant.html.

There are exercises at the end of each chapter and the answers are provided for
all exercises at the end of the book. We hope that students and instructors alike
find these useful; they can easily be adapted to provide further exercises.

The case for combining methods of quantitative data analysis used by both
psychologists and sociologists in part derives from our belief that the
requirements of students of the two subjects often overlap substantially. None
the less, instructors can omit particular techniques as they wish.

We wish to thank David Stonestreet, formerly of Routledge, for his support
of the earlier editions of this book and our current editor Vivien Ward for her
support of the present book. We also wish to thank Louis Cohen, Max Hunt
and Tony Westaway for reading the manuscript for the first edition of this
book and for making useful suggestions for improvement. We accept that they
cannot be held liable for any errors in that or the present edition. Such errors
are entirely of our own making, though we will undoubtedly blame each other
for them.

Alan Bryman and Duncan Cramer
Loughborough University



Chapter 1

Data analysis and the

research process

This book largely covers the field that is generally referred to as ‘statistics’, but
as our Preface has sought to establish, we have departed in a number of respects
from the way in which this subject is conventionally taught to under- and
postgraduates. In particular, our preferences are for integrating data analysis
with computing skills and for not burdening the student with formulae. These
predilections constitute a departure from many, if not most, treatments of this
subject. We prefer the term ‘quantitative data analysis’ because the emphasis is
on the understanding and analysis of data rather than on the precise nature of the
statistical techniques themselves.

Why should social science students have to study quantitative data analysis,
especially at a time when qualitative research is coming increasingly to the fore
(Bryman 1988a)? After all, everyone has heard of the ways in which statistical
materials can be distorted, as indicated by Disraeli’s often-quoted dictum:
‘There are lies, damn lies and statistics’. Why should serious researchers and
students be prepared to get involved in such a potentially unworthy activity? If
we take the first issue—why should social science students study quantitative
data analysis—it is necessary to remember that an extremely large proportion of
the empirical research undertaken by social scientists is designed to generate or
draws upon quantitative data. In order to be able to appreciate the kinds of
analyses that are conducted in relation to such data and possibly to analyze their
own data (especially since many students are required to carry out projects), an
acquaintance with the appropriate methods of analysis is highly desirable for
social science students. Further, although qualitative research has quite properly
become a prominent strategy in sociology and some other areas of the social
sciences, it is by no means as pervasive as quantitative research, and in any case
many writers recognize that there is much to be gained from a fusion of the two
research traditions (Bryman 1988a).

On the question of the ability of statisticians to distort the analyses that they
carry out, the prospects for which are substantially enhanced in many people’s
eyes by books with such disconcerting titles as How to Lie with Statistics (Huff
1973), it should be recognized that an understanding of the techniques to be
covered in our book will greatly enhance the ability to see through the
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2 Data analysis and the research process

misrepresentations about which many people are concerned. Indeed, the
inculcation of a sceptical appreciation of quantitative data analysis is beneficial
in the light of the pervasive use of statistical data in everyday life. We are
deluged with such data in the form of the results of opinion polls, market
research findings, attitude surveys, health and crime statistics, and so on. An
awareness of quantitative data analysis greatly enhances the ability to recognize
faulty conclusions or potentially biased manipulations of the information. There
is even a fair chance that a substantial proportion of the readers of this book will
get jobs in which at some point they will have to think about the question of how
to analyze and present statistical material. Moreover, quantitative data analysis
does not comprise a mechanical application of predetermined techniques by
statisticians and others; it is a subject with its own controversies and debates,
just like the social sciences themselves. Some of these areas of controversy will
be brought to the reader’s attention where appropriate.

QUANTITATIVE DATA ANALYSIS AND THE
RESEARCH PROCESS

In this section, the way in which quantitative data analysis fits into the research
process—specifically the process of quantitative research—will be explored. As
we will see, the area covered by this book does not solely address the question
of how to deal with quantitative data, since it is also concerned with other
aspects of the research process that impinge on data analysis.

Figure 1.1 provides an illustration of the chief steps in the process of
quantitative research. Although there are grounds for doubting whether research
always conforms to a neat linear sequence (Bryman 1988a, 1988b), the
components depicted in Figure 1.1 provide a useful model. The following stages
are delineated by the model.

Theory

The starting point for the process is a theoretical domain. Theories in the social
sciences can vary between abstract general approaches (such as functionalism)
and fairly low-level theories to explain specific phenomena (such as voting
behaviour, delinquency, aggressiveness). By and large, the theories that are
most likely to receive direct empirical attention are those which are at a fairly
low level of generality. Merton (1967) referred to these as theories of the middle
range, to denote theories that stood between general, abstract theories and
empirical findings. Thus, Hirschi (1969), for example, formulated a ‘control
theory’ of juvenile delinquency which proposes that delinquent acts are more
likely to occur when the child’s bonds to society are breached. This theory in
large part derived from other theories and also from research findings relating to
juvenile delinquency.
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Figure 1.1 The research process

Hypothesis

Once a theory has been formulated, it is likely that researchers will want to test
it. Does the theory hold water when faced with empirical evidence? However, it
is rarely possible to test a theory as such. Instead, we are more likely to find that
a hypothesis, which relates to a limited facet of the theory, will be deduced from
the theory and submitted to a searching enquiry. For example, Hirschi, drawing
upon his control theory, stipulates that children who are tied to conventional
society (in the sense of adhering to conventional values and participating or
aspiring to participate in conventional values) will be less likely to commit
delinquent acts than those not so tied. Hypotheses very often take the form of
relationships between two or more entities—in this case commitment to
conventional society and juvenile delinquency. These ‘entities’ are usually
referred to as ‘concepts’; that is, categories in which are stored our ideas and
observations about common elements in the world. The nature of concepts is
discussed in greater detail in Chapter 4. Although hypotheses have the
advantage that they force researchers to think systematically about what they
want to study and to structure their research plans accordingly, they exhibit a
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potential disadvantage in that they may divert a researcher’s attention too far
away from other interesting facets of the data he or she has amassed.

Operationalization of concepts

In order to assess the validity of a hypothesis it is necessary to develop measures
of the constituent concepts. This process is often referred to as
operationalization, following expositions of the measurement process in
physics (Bridgman 1927). In effect, what is happening here is the translation of
the concepts into variables; that is, attributes on which relevant objects
(individuals, firms, nations, or whatever) differ. Hirschi operationalized the idea
of commitment to conventional society in a number of ways. One route was
through a question on a questionnaire asking the children to whom it was to be
administered whether they liked school. Delinquency was measured in one of
two ways, of which one was to ask about the number of delinquent acts to which
children admitted (i.e. self-reported delinquent acts). In much experimental
research in psychology, the measurement of concepts is achieved through the
observation of people, rather than through the administration of questionnaires.
For example, if the researcher is interested in aggression, a laboratory situation
may be set up in which variations in aggressive behaviour are observed. Another
way in which concepts may be operationalized is through the analysis of
existing statistics, of which Durkheim’s (1952/1898) classic analysis of suicide
rates is an example. A number of issues to do with the process of devising
measures of concepts and some of the properties that measures should possess
are discussed in Chapter 4.

Selection of respondents or participants

If a survey investigation is being undertaken, the researcher must find relevant
people to whom the research instrument that has been devised (e.g. self-
administered questionnaire, interview schedule) should be administered.
Hirschi, for example, randomly selected over 5,500 schoolchildren from an area
in California. The fact of random selection is important here because it reflects
a commitment to the production of findings that can be generalized beyond the
confines of those who participate in a study. It is rarely possible to contact all
units in a population, so that a sample invariably has to be selected. In order to
be able to generalize to a wider population, a representative sample, such as one
that can be achieved through random sampling, will be required. Moreover,
many of the statistical techniques to be covered in this book are inferential
statistics, which allow the researcher to demonstrate the probability that the
results deriving from a sample are likely to be found in the population from
which the sample was taken, but only if a random sample has been selected.
These issues are examined in Chapter 6.
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Setting up a research design

There are two basic types of research design that are employed by psychologists
and sociologists. The former tend to use experimental designs in which the
researcher actively manipulates aspects of a setting, either in the laboratory or in
a field situation, and observes the effects of that manipulation on experimental
participants. There must also be a ‘control group’ which acts as a point of
comparison with the group of participants who receive the experimental
manipulation. With a survey/correlational design, the researcher does not
manipulate any of the variables of interest and data relating to all variables are
collected simultaneously. The term correlation also refers to a technique for
analyzing relationships between variables (see Chapter 8), but is used in the
present context to denote a type of research design. The researcher does not
always have a choice regarding which of the two designs can be adopted. For
example, Hirschi could not make some children committed to school and others
less committed and observe the effects on their propensity to commit delinquent
acts. Some variables, like most of those studied by sociologists, are not capable
of manipulation. However, there are areas of research in which topics and
hypotheses are addressed with both types of research design (e.g. the study of
the effects of participation at work on job satisfaction and performance—see
Bryman 1986; Locke and Schweiger 1979). It should be noted that in most
cases, therefore, the nature of the research design—whether experimental or
survey/correlational—is known at the outset of the sequence signified by Figure
1.1, so that research design characteristics permeate and inform a number of
stages of the research process. The nature of the research design has
implications for the kinds of statistical manipulation that can be performed on
the resulting data. The differences between the two designs are given greater
attention in the next section.

Collect data

The researcher collects data at this stage, by interview, questionnaire,
observation, or whatever. The technicalities of the issues pertinent to this stage
are not usually associated with a book such as this. Readers should consult a
textbook concerned with social and psychological research methods if they are
unfamiliar with the relevant issues.

Analyze data

This stage connects very directly with the material covered in this book. At a
minimum, the researcher is likely to want to describe his or her participants in
terms of the variables deriving from the study. For example, the researcher
might be interested in the proportion of children who claim to have committed
no, just one, or two or more delinquent acts. The various ways of analyzing and
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presenting the information relating to a single variable (sometimes called
univariate analysis) are examined in Chapter 5. However, the analysis of a
single variable is unlikely to suffice and the researcher will probably be
interested in the connection between that variable and each of a number of other
variables, i.e. bivariate analysis. The examination of connections among
variables can take either of two forms. A researcher who has conducted an
experiment may be interested in the extent to which experimental and control
groups differ in some respect. For example, the researcher might be interested in
examining whether watching violent films increases aggressiveness. The
experimental group (which watches the violent films) and the control group
(which does not) can then be compared to see how far they differ. The
techniques for examining differences are explored in Chapter 7. The researcher
may be interested in relationships between variables—are two variables
connected with each other so that they tend to vary together? For example,
Hirschi (1969:121) presents a table which shows how liking school and self-
reported delinquent acts are interconnected. He found that whereas only 9 per
cent of children who say they like school have committed two or more
delinquent acts, 49 per cent of those who say they dislike school have
committed as many delinquent acts. The ways in which relationships among
pairs of variables can be elucidated can be found in Chapter 8. Very often the
researcher will be interested in exploring connections among more than two
variables, i.e. multivariate analysis. Chapter 9 examines such analysis in the
context of the exploration of differences, while Chapter 10 looks at the
multivariate analysis of relationships among more than two variables. The
distinction between studying differences and studying relationships is not
always clear-cut. We might find that boys are more likely than girls to commit
delinquent acts. This finding could be taken to mean that boys and girls differ in
terms of propensity to engage in delinquent acts or that there is a relationship
between gender and delinquency.

Findings

If the analysis of data suggests that a hypothesis is confirmed, this result can be
fed back into the theory that prompted it. Future researchers can then concern
themselves either with seeking to replicate the finding or with other ramifications
of the theory. However, the refutation of a hypothesis can be just as important in
that it may suggest that the theory is faulty, or at the very least in need of
revision. Sometimes the hypothesis may be confirmed in some respects only. For
example, a multivariate analysis may suggest that a relationship between two
variables pertains to only some members of a sample, but not others (e.g. women
but not men, or younger but not older people). Such a finding will require a
reformulation of the theory. Not all findings will necessarily relate directly to a
hypothesis. With a social survey, for example, the researcher may collect data on
topics whose relevance only becomes evident at a later juncture.
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As suggested above, the sequence depicted in Figure 1.1 constitutes a model
of the research process, which may not always be reproduced in reality. None
the less, it does serve to pinpoint the importance to the process of quantitative
research of developing measures of concepts and the thorough analysis of
subsequent data. One point that was not mentioned in the discussion is the form
that the hypotheses and findings tend to assume. One of the main aims of much
quantitative research in the social sciences is the demonstration of causality—
that one variable has an impact upon another. The terms independent variable
and dependent variable are often employed in this context. The former denotes
a variable that has an impact upon the dependent variable. The latter, in other
words, is deemed to be an effect of the independent variable. This causal
imagery is widespread in the social sciences and a major role of multivariate
analysis is the elucidation of such causal relationships (Bryman 1988a). The
ease with which a researcher can establish cause and effect relationships is
strongly affected by the nature of the research design and it is to this topic that
we shall now turn.

CAUSALITY AND RESEARCH DESIGN

As suggested in the last paragraph, one of the chief preoccupations among
quantitative researchers is to establish causality. This preoccupation in large part
derives from a concern to establish findings similar to those of the natural
sciences, which often take a causal form. Moreover, findings which establish
cause and effect can have considerable practical importance: if we know that
one thing affects another, we can manipulate the cause to produce an effect. In
much the same way that our knowledge that smoking may cause a number of
illnesses, such as lung cancer and heart disease, the social scientist is able to
provide potentially practical information by demonstrating causal relationships
in appropriate settings.

To say that something causes something else is not to suggest that the
dependent variable (the effect) is totally influenced by the independent variable
(the cause). You do not necessarily contract a disease if you smoke and many of
the diseases contracted by people who smoke afflict those who never smoke.
‘Cause’ here should be taken to mean that variation in the dependent variable is
affected by variation in the independent variable. Those who smoke a lot are
more likely than those who smoke less, who in turn are more likely than those
who do not smoke at all, to contract a variety of diseases that are associated with
smoking. Similarly, if we find that watching violence on television induces
aggressive behaviour, we are not saying that only people who watch televised
violence will behave aggressively, nor that only those people who behave
aggressively watch violent television programmes. Causal relationships are
invariably about the likelihood of an effect occurring in the light of particular
levels of the cause: aggressive behaviour may be more likely to occur when a lot
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of television violence is watched and people who watch relatively little
television violence may be less likely to behave aggressively.

Establishing causality

In order to establish a causal relationship, three criteria have to be fulfilled. First,
it is necessary to establish that there is an apparent relationship between two
variables. This means that it is necessary to demonstrate that the distribution of
values of one variable corresponds to the distribution of values of another
variable. Table 1.1 provides information for ten children on the number of
aggressive acts they exhibit when they play in two groups of five for 2 hours per
group. The point to note is that there is a relationship between the two variables in
that the distribution of values for number of aggressive acts coincides with the
distribution for the amount of televised violence watched—children who watch
more violence exhibit more aggression than those who watch little violence. The
relationship is not perfect: three pairs of children—3 and 4, 6 and 7 and 9 and
10—record the same number of aggressive acts, even though they watch different
amounts of television violence. Moreover, 8 exhibits more aggression than 6 or 7,
even though the latter watch more violence. None the less, a clear pattern is
evident which suggests that there is a relationship between the two variables.

Second, it is necessary to demonstrate that the relationship is non-spurious.
A spurious relationship occurs when there is not a ‘true’ relationship between
two variables that appear to be connected. The variation exhibited by each
variable is affected by a common variable. Imagine that the first five children
are boys and the second five are girls. This would suggest that gender has a
considerable impact on both variables. Boys are more likely than girls both to
watch more television violence and to exhibit greater aggressiveness. There is
still a slight tendency for watching more violence and aggression to be related
for both boys and girls, but these tendencies are far less pronounced than for the
ten children as a whole. In other words, gender affects each of the two variables.
It is because boys are much more likely than girls both to watch more television
violence and to behave aggressively that Figure 1.2 illustrates the nature of such
a spurious relationship.

Third, it is necessary to establish that the cause precedes the effect, i.e. the
time order of the two related variables. In other words, we must establish that
aggression is a consequence of watching televised violence and not the other
way around. An effect simply cannot come before a cause. This may seem an
extremely obvious criterion that is easy to demonstrate, but as we will see, it
constitutes a very considerable problem for non-experimental research designs.

Causality and experimental designs

A research design provides the basic structure within which an investigation
takes place. While a number of different designs can be found, a basic
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distinction is that between experimental and non-experimental research designs
of which the survey/correlational is the most prominent. In an experiment, the
elucidation of cause and effect is an explicit feature of the framework. The term
internal validity is often employed as an attribute of research and indicates
whether the causal findings deriving from an investigation are relatively
unequivocal. An internally valid study is one which provides firm evidence of
cause and effect. Experimental designs are especially strong in respect of
internal validity; this attribute is scarcely surprising in view of the fact that they
have been developed specifically in order to generate findings which indicate
cause and effect.

Imagine that we wanted to establish that watching violence on television
enhances aggression in children, we might conceive of the following study. We
bring together a group of ten children. They are allowed to interact and play for
2 hours, during which the number of aggressive acts committed by each child is
recorded by observers, and the children are then exposed to a television

Table 1.1 Data on television violence and
aggression

Figure 1.2 A spurious relationship
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programme with a great deal of violence. Such exposure is often called the
experimental treatment. They are then allowed a further 2-hour period of play
and interaction. Aggressive behaviour is recorded in exactly the same way.
What we have here is a sequence which runs:

Obs1 Exp Obs2

where Obs1 is the initial measurement of aggressive behaviour (often called the
pre-test), Exp is the experimental treatment which allows the independent
variable to be introduced, and Obs2 is the subsequent measurement of
aggression (often called the post-test).

Let us say that Obs2 is 30 per cent higher than Obs1, suggesting that
aggressive behaviour has increased substantially. Does this mean that we can
say that the increase in aggression was caused by the violence? We cannot make
such an attribution because there are alternative explanations of the presumed
causal connection. The children may well have become more aggressive over
time simply as a consequence of being together and becoming irritated by each
other. The researchers may not have given the children enough food or drink
and this may have contributed to their bad humour. There is even the possibility
that different observers were used for the pre- and post-tests who used different
criteria of aggressiveness. So long as we cannot discount these alternative
explanations, a definitive conclusion about causation cannot be proffered.

Anyone familiar with the natural sciences will know that an important facet
of a properly conducted experiment is that it is controlled so that potentially
contaminating factors are minimized. In order to control the contaminating
factors that have been mentioned (and therefore to allow the alternative
explanations to be rejected), a control group is required. This group has exactly
the same cluster of experiences as the group which receives the first treatment—
known as the experimental group—but it does not receive the experimental
treatment. In the context of our imaginary television study, we now have two
groups of children who are exposed to exactly the same conditions, except that
one group watches the violent films (the experimental group) and the second
group has no experimental treatment (the control group). This design is
illustrated in Figure 1.3. The two groups’ experiences have to be as similar as
possible, so that only the experimental group’s exposure to the experimental
treatment distinguishes them.

It is also necessary to ensure that the members of the two groups are as
similar as possible. This is achieved by taking a sample of children and
randomly assigning them to either the experimental or the control group. If
random assignment is not carried out, there is always the possibility that
differences between the two groups can be attributed to divergent personal or
other characteristics. For example, there may be more boys than girls in one
group, or differences in the ethnic composition of the two groups. Such
differences in personal or back-ground characteristics would mean that the
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ensuing findings could not be validly attributed to the independent variable, and
that factor alone.

Let us say that the difference between Obs1 and Obs2 is 30 per cent and
between Obs3 and Obs4 is 28 per cent. If this were the case, we would conclude
that the difference between the two groups is so small that it appears that the
experimental treatment (Exp) has made no difference to the increase in
aggression; in other words, aggression in the experimental group would probably
have increased anyway. The frustration of being together too long or insufficient
food or drink or some other factor probably accounts for the Obs2-Obs1

difference. However, if the difference between Obs3 and Obs4 was only 3 per
cent, we would be much more prepared to say that watching violence has
increased aggression in the experimental group. It would suggest that around 27
per cent of the increase in aggressive behaviour in the experimental group (i.e.
30-3) can be attributed to the experimental treatment. Differences between
experimental and control groups are not usually as clear-cut as in this illustration,
since often the difference between the groups is fairly small. Statistical tests are
necessary in this context to determine the probability of obtaining such a
difference by chance. Such tests are described in Chapters 7 and 9.

In this imaginary investigation, the three criteria of causality are met, and
therefore if we did find that the increase in the dependent variable was
considerably greater for the experimental group than the control group we could
have considerable confidence in saying that watching television violence caused
greater aggression. First, a relationship is established by demonstrating that
participants watching television violence exhibited greater aggression than
those who did not. Second, the combination of a control group and random
assignment allows the possibility of the relationship being spurious to be
eliminated, since other factors which may impinge on the two variables would
apply equally to the two groups. Third, the time order of the variables is
demonstrated by the increase in aggressive behaviour succeeding the
experimental group’s exposure to the television violence. Precisely because the
independent variable is manipulated by the researcher, time order can be easily

Figure 1.3 An experiment
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demonstrated, since the effects of the manipulation can be directly gauged.
Thus, we could say confidently that Watching television violence ® Aggressive
behaviour since the investigation exhibits a high degree of internal validity.

There are a variety of different types of experimental design. These are
briefly summarized in Figure 1.4. In the first design, there is no pre-test, just a
comparison between the experimental and control groups in terms of the
dependent variable. With the second design, there are a number of groups. This
is a frequent occurrence in the social sciences where one is more likely to be
interested in different levels or types of the independent variable rather than
simply its presence or absence. Thus, in the television violence context, we
could envisage four groups consisting of different degrees of violence. The third
design, a factorial design, occurs where the researcher is interested in the effects
of more than one independent variable on the dependent variable. The
researcher might be interested in whether the presence of adults in close
proximity reduces children’s propensity to behave aggressively. We might then
have four possible combinations deriving from the manipulation of each of the
two independent variables. For example, Exp1+A would mean a combination of
watching violence and adults in close proximity; Exp1+B would be watching
violence and no adults in close proximity.

SURVEY DESIGN AND CAUSALITY

When a social survey is carried out, the nature of the research design is very
different from the experiment. The survey usually entails the collection of data

Figure 1.4 Three types of experimental design
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on a number of variables at a single juncture. The researcher might be interested
in the relationship between people’s political attitudes and behaviour on the one
hand, and a number of other variables such as each respondent’s occupation,
social background, race, gender, age, and various non-political attitudes. But
none of these variables is manipulated as in the experiment. Indeed, many
variables cannot be manipulated and their relationships with other variables can
only be examined through a social survey. We cannot make some people old,
others young, and still others middle-aged and then observe the effects of age on
political attitudes. Moreover, not only are variables not manipulated in a social-
survey study, data on variables are simultaneously collected so that it is not
possible to establish a time order to the variables in question. In an experiment,
a time order can be discerned in that the effect of the manipulated independent
variable on the dependent variable is directly observed. These characteristics are
not solely associated with research using interviews or questionnaires. Many
studies using archival statistics, such as those collected by governments and
organizations, exhibit the same characteristics, since data are often available in
relation to a number of variables for a particular year.

Survey designs are often called correlational designs to denote the tendency
for such research to be able to reveal relationships between variables and to
draw attention to their limited capacity in connection with the elucidation of
causal processes. Precisely because in survey research variables are not
manipulated (and often are not capable of manipulation), the ability of the
researcher to impute cause and effect is limited. Let us say that we collect data
on manual workers’ levels of job satisfaction and productivity in a firm. We may
find, through the kinds of techniques examined in Chapter 8 of this book, that
there is a strong relationship between the two, suggesting that workers who
exhibit high levels of job satisfaction also have high levels of productivity. We
can say that there is a relationship between the two variables (see Figure 1.5),
but as we have seen, this is only a first step in the demonstration of causality. It
is also necessary to confirm that the relationship is non-spurious. For example,
could it be that workers who have been with the firm a long time are both more
satisfied and more productive (see Figure 1.6)? The ways in which the
possibility of non-spuriousness can be checked are examined in Chapter 10.

However, the third hurdle—establishing that the putative cause precedes the
putative effect—is extremely difficult. The problem is that either of the two
possibilities depicted in Figure 1.7 may be true. Job satisfaction may cause
greater productivity, but it has long been recognized that the causal connection
may work the other way around (i.e. if you are good at your job you often enjoy
it more). Because data relating to each of the two variables have been
simultaneously collected, it is not possible to arbitrate between the two versions
of causality presented in Figure 1.7. One way of dealing with this problem is
through a reconstruction of the likely causal order of the variables involved.
Sometimes this process of inference can be fairly uncontroversial. For example,
if we find a relationship between race and number of years spent in formal
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Figure 1.7 Two possible causal interpretations of a relationship

schooling, we can say that the former affects the latter. However, this modelling
of likely causal connections is more fraught when it is not obvious which
variable precedes the other, as with the relationship between job satisfaction and
productivity. When such difficulties arise, it may be necessary to include a
second wave of data collection in relation to the same respondents in order to
see, for example, whether the impact of job satisfaction on subsequent
productivity is greater than the impact of productivity on subsequent job
satisfaction. Such a design is known as a panel design (Cramer 1996), but is not
very common in the social sciences. The bulk of the discussion in this book
about non-experimental research will be concerned with the survey/
correlational design in which data on variables are simultaneously collected.

The procedures involved in making causal inferences from survey data are
examined in Chapter 10 in the context of the multivariate analysis of
relationships among variables. The chief point to be gleaned from the preceding
discussion is that the extraction of causal connections among variables can be
undertaken with greater facility in the context of experimental research than
when survey data are being analyzed.

Figure 1.5 A relationship between two variables

Figure 1.6 Is the relationship spurious?
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EXERCISES

1. What is the chief difference between univariate, bivariate and multivariate
quantitative data analysis?

2. Why is random assignment crucial to a true experimental design?

3. A researcher collects data by interview on a sample of households to find out
if people who read ‘quality’ daily newspapers are more knowledgeable about
politics than people who read ‘tabloid’ newspapers daily. The hunch was
confirmed. People who read the quality newspapers were twice as likely to
respond accurately to a series of questions designed to test their political
knowledge. The researcher concludes that the quality dailies induce higher
levels of political knowledge than the tabloids. Assess this reasoning.

 
 



Chapter 2

Analyzing data with

computers
First steps with SPSS 8 for Windows

Since the different kinds of statistics to be described in this book will be carried
out with one of the, if not the, most widely used and comprehensive statistical
programs in the social sciences, SPSS, we will begin by outlining what this
entails. The abbreviation SPSS stands for Statistical Package for the Social
Sciences. This package of programs is available for both personal and
mainframe (or multi-user) computers. These programs are being continuously
updated and so there are various versions in existence.

Currently there are two main kinds of operating system for computers. The
traditional system, still employed by mainframe (or multi-user) computers,
requires commands and names to be typed in. The more recent system uses
menus and dialog boxes from which these commands and names can be selected
by keys or a mouse, although commands can also be typed in. This latter system
was originally developed for Macintosh personal computers and is now
available for a Windows environment on IBM-compatible personal computers
having a 386 or higher processor. The version for Windows 3.1 is known as
SPSS Release 6, which we have outlined in an earlier book (Bryman and
Cramer 1997). After the introduction of Windows 95, a new release of SPSS
(Release 7) was designed to run on this operating system. The latest version for
Windows 95 is Release 8 (SPSS Inc. 1998). This book describes the use of
Release 8, which we shall refer to for short as SPSS unless otherwise indicated.
Users of Releases 7 and 7.5 will find the version that we describe in this book
more useful and familiar to them than that described in Bryman and Cramer
(1997), which was Release 6.

The great advantage of using a package like SPSS is that it will enable you
to score and to analyze quantitative data very quickly and in many different
ways once you have learned how. In other words, it will help you to eliminate
those long hours spent working out scores, carrying out involved calculations,
and making those inevitable mistakes that so frequently occur while doing this.
It will also provide you with the opportunity for using more complicated and
often more appropriate statistical techniques which you would not have dreamt
of attempting otherwise.

16
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There is, of course, what may seem to be a strong initial disadvantage in
using computer programs to analyze data, namely that you will have to learn
how to run these programs. The time spent doing this, however, will be much
less than doing these same calculations by hand. In addition, you will have
picked up some knowledge which should be of value to you in a world where
the use of computers is fast becoming increasingly common. The ability to do
things quickly and with little effort is also much more fun and often easier than
you might at first imagine.

When mastering a new skill, like SPSS, it is inevitable that you will make
mistakes which can be frustrating and off-putting. While this is something we
all do, it may seem that we make many more mistakes when learning to use a
computer than we do carrying out other activities. The reason for this is that
programs require instructions to be given in a very precise form and usually in
a particular sequence in order for them to work. This precision may be less
obvious or true of other everyday things that we do. It is worth remembering,
however, that these errors will not harm the computer or its program in any way.

In order to make as few mistakes as possible, it is important at this stage to
follow precisely the instructions laid down for the examples in this and
subsequent chapters. Although ‘bugs’ do sometimes occur, errors are usually
the result of something you have done and not the fault of the machine or the
program. The program will tell you what the error is if there is something wrong
with the form of the instructions you have given it, but not if you have told it to
add up the wrong set of numbers. In other words, it questions the presentation
but not the objectives of the instructions.

THE DATA FILE

Before you can analyze data, you need to create a file which holds them. To
illustrate the way in which these files are produced, we will use an imaginary set
of data from a questionnaire study which is referred to as the Job Survey. The
data relating to this study derive from two sources: a questionnaire study of
employees who answer questions about themselves and a questionnaire study of
their supervisors who answer questions relating to each of the employees. The
questions asked are shown in Appendix 2.1 at the end of this chapter, while the
coding of the information or data collected is presented in Table 2.1. The cases
consist of people, traditionally called respondents by sociologists and subjects
by psychologists whose preferred term now is participants. Although
questionnaire data have been used as an example, it should be recognized that
SPSS and the data analysis procedures described in this book may be used with
other forms of quantitative data, such as official statistics or observational
measures.

As the data set is relatively large, it may be more convenient to let skilled
personnel enter the data into a file for you if you have access to such a service.
If you do, they may enter it into what is called a simple text or ASCII file.
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Table 2.1 The Job-Survey data
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ASCII stands for American Standard Code for Information Interchange and is
widely used for transferring information from one computer to another. You
then read this data file into SPSS. If you do not have access to such a service or
if the data set is small, then it may be easier for you to enter the data directly into
an SPSS window called Data Editor. Both these procedures are described later
on in this chapter.

With a simple text file, the data are put into a space which consists of a large
number of rows, comprising a maximum of eighty columns in many computers.
Each column in a row can only take one character such as a single digit. The
data for the same variable are always placed in the same column(s) in a row and
a row always contains the data of the same object of analysis or case. Cases are
often people, but can be any unit of interest such as families, schools, hospitals,
regions or nations.

Since it is easier to analyze data consisting of numbers rather than a mixture
of numbers and other characters such as alphabetic letters, all of the variables or
answers in the Job Survey have been coded as numbers. So, for instance, each
of the five possible answers to the first question has been given a number
varying from 1 to 5. If the respondent has put a tick against White/European,
then this response is coded as 1. (Although the use of these categories may be
questioned, as may many of the concepts in the social sciences, this kind of
information is sometimes collected in surveys and is used here as an example of
a categorical (nominal) variable. We shall shorten the name of the first category
to ‘white’ throughout the book to simplify matters.) It is preferable in designing
questionnaires that, wherever possible, numbers should be clearly assigned to

Table 2.1 Continued
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particular answers so that little else needs to be done to the data before they are
typed in by someone else. Before multiple copies of the questionnaire are made,
it is always worth checking with the person who types in this information that
this has been adequately done.

It is also important to reserve a number for missing data, such as a failure to
give a clear and unambiguous response, since we need to record this
information. Numbers which represent real or non-missing data should not be
used to code missing values. Thus, for example, since the answers to the first
question on ethnic group in the Job Survey are coded 1 to 5, it is necessary to
use some other number to identify a missing response. In this survey all missing
data except that for absenteeism have been coded as zero since this value cannot
be confused with the way that non-missing data are represented. Because some
employees have not been absent from work (i.e. zero days), missing data for
absenteeism could not be coded as ‘0’. Instead, it is indicated by ‘99’ since no
employee has been away that long. Sometimes it might be necessary to
distinguish different kinds of missing data, such as a ‘Don’t know’ response
from a ‘Does not apply’ one, in which case these two answers would be
represented by different numbers.

It is advisable to give each participant an identifying number to be able to
refer to them if necessary. This number should be placed in the first few
columns of each row or line. Since there are seventy participants, only columns
1 and 2 need to be used for this purpose. If there were 100 participants, then the
first three columns would be required to record this information as the largest
number consists of three digits. One empty or blank space will be left between
columns containing data for different variables to make the file easier to read,
although it is not necessary to do this.

Since all the data for one participant can be fitted on to one line using this
fixed format, only one line needs to be reserved for each participant in this
instance and the data for the next participant can be put into the second line. If
more than one line were required to record all the data for one participant, then
you would use as many subsequent rows as were needed to do so. In this case,
it may also be worth giving each of the lines of data for a particular participant
an identifying number to help you read the information more readily, so that the
first line would be coded 1, the second 2, and so on. Each line or row of data for
a participant is known as a record in SPSS.

The first variable in our survey and our data file refers to the racial or ethnic
origin of our respondents. Since this can take only one of six values (if we
include the possibility that they might not have answered this question), then
these data can be put into one column. If we leave a space between the
participant’s two-digit identification number and the one-digit number
representing their ethnic group, then the data for this latter variable will be placed
in column 4. Since the second variable of gender can also be coded as a single
digit number, this information has been placed in column 6. The third variable of
current gross annual income, however, requires five columns of space since two
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participants (47 and 65) earned more than £10,000 and so this variable occupies
columns 8 to 12 inclusive (please note that the comma and pound sign should not
be included when entering the data).

A full listing of the variables and the columns they occupy is presented in
Table 2.2. The data file is named jsr.dat which is an abbreviation of ‘job survey
raw data’. Since SPSS accepts letters written in capitals or upper case (for
example, JSR.DAT) and small or lower case (for example, jsr.dat), lower-case
letters will be used to make typing easier for you. Restrictions and conventions
on the form of names will be described later in this chapter.

GAINING ACCESS TO SPSS

To use SPSS, it is necessary to have access to it via a personal computer. A
personal computer consists of a keyboard on which you type in your
instructions, a mouse which provides an alternative way of moving about the
screen and selecting instructions, and usually a video display unit (VDU) or

Table 2.2 The SPSS names and column locations of the Job-Survey variables
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television-like screen which displays information. While the amount of
information shown at any one moment on the screen is necessarily limited,
further information can be brought into view with the appropriate use of the
keys or the mouse. A personal computer also usually has a printer which can be
used to print out information stored in the computer, so can be used to print out
a record of what you have done. Keyboards are used to type or put in (hence the
term input) the data that you want to analyze and also the names of variables
and files you have created.

The Windows system allows commands to be selected from words or
icons presented as a menu in a window on the screen. Commands can usually
be selected by moving a pointer called a cursor on to them with either the
keys or, more normally, the mouse, and then pressing the Return key or the
left button on the mouse, or in Windows 95 by simply selecting the next
option. Choosing options with the mouse is generally easier than doing this
with keys since it simply involves moving the mouse appropriately. With
keys, however, some options are chosen by pressing the relevant cursor keys
while others are selected by pressing up to two keys other than the cursor
keys. The cursor keys are usually on the right-hand side of the keyboard and
have arrows on them pointing in the direction in which the cursor is to be
moved. You may prefer to use the mouse for some operations and the keys
for others.

To invoke SPSS in the windows environment, select the appropriate SPSS
icon which produces the Data Editor window as shown in Box 2.1. Data can be
entered directly into the cells of this window.

Listed at the top of this window are the names of various procedures such
as File, Edit, and so on. To see what these procedures are, we simply move
the cursor to a particular option and press the left button on the mouse once
when a drop-down menu will appear as shown in Box 2.2 where the Data
option has been chosen. To see the other options, simply move the cursor to
that option.

The ellipse or three dots after an option term (…) on a drop-down menu,
such as on the Define Variable…option, signifies that a dialog box will appear
when this option is chosen. If we select this option, for example, the Define
Variable dialog box displayed in Box 2.3 will appear. To cancel a dialog box,
select the Cancel button in the dialog box. A right facing arrowhead � after an
option term such as on the Merge Files option, on the other hand, indicates that
a further submenu will appear to the right of the drop-down menu, as shown in
Box 2.12. An option with neither of these signs means that there are no further
drop-down menus to select.

Below these options is a toolbar with buttons on it. These buttons enable you
to carry out procedures directly without having to go to the options and
selecting the appropriate procedure. The functions that the buttons carry out are
displayed in a small yellow box near them and in the bottom line of the window.
So, for example, the first button says Open File. You can add further buttons
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Box 2.1 Opening display for SPSS

Box 2.2 Data option drop-down menu
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Box 2.3 Define Variable dialog box

to the toolbar. The Help system described on p. 37 gives instructions on how to
do this.

ENTERING AND EDITING DATA IN Data Editor

The easiest way of entering data in SPSS yourself is to type it directly into the
matrix of columns and numbered rows in the Data Editor window shown in
Box 2.1. Note that in this case a column can hold more than one digit. Initially
the cursor will be in the cell in the first row of the first column. The frame of
this cell will be shown in bold to denote that it is the active cell. To enter a
value in any one cell, make that cell active by moving to it with either the
cursor keys or the mouse, type in the value and then move to the next cell into
which you want to put a value. Columns are consecutively numbered once you
enter a value. So if you enter a value in the fifth column the first five columns
will be labelled var00001 to var00005. To change any value already entered,
move to the cell containing that value, type in the new value and move to
another cell. If you want to leave a cell empty delete the entry with the
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Backspace or Delete key and move to another cell, when a full stop (.) will be
left denoting a missing value.

Naming variables in Data Editor

To name a variable in Data Editor place the cursor anywhere in the column
containing that variable. Then select the Data option at the top of the window
followed by the Define Variable…option to open the Define Variable dialog
box. Delete the default highlighted name [e.g. var00001] in the box beside
Variable Name: by typing in your own variable name [e.g. ethnicgp]. Then
select the OK button to complete the procedure.

We will generally use a particular notation throughout this book as shorthand
to describe the steps involved in any application. The selection of a step or
option will be indicated with a right facing arrow � pointing to the term(s) on
the menu or dialog box to be chosen. Any explanations will be placed in square
brackets after the option shown. Steps in a dialog box or a subdialog box (which
is a box which can only be accessed after the initial dialog box has been opened)
will begin on a new line. The sequence will be indented. Thus, the notation for
naming a variable in Data Editor is:

�column to be named �Data �Define Variable…[opens Define
Variable dialog box shown in Box 2.3]
� in box beside Variable Name: type in own variable name [deleting
default name var00001] �OK

SPSS names

Variable and file names in SPSS have to meet certain specifications. They must
be no longer than eight characters and must begin with an alphabetic character
(A-Z). The remaining characters can be any letter, number, period, @ (at), $
(dollar) or _ (underscore). Blank spaces are not allowed and they cannot end
with a period and preferably not with an underscore. In addition certain words,
known as keywords, cannot be used because they can only be interpreted as
commands by SPSS. They include words such as add, and, any, or, and to, to
give but a few examples. If you accidentally use a prohibited keyword as a
name, you will be told this is invalid when you try to run this procedure by
selecting the OK button. No keyword contains numbers so you can be certain
that names which include numbers will always be recognized as such. It is
important to remember that the same name cannot be used for different
variables or files. Thus, for example, you could not use the name satis to refer
to all four of the questions which measure job satisfaction. You would need to
distinguish them in some way such as calling the answer to the first question
satis1, the answer to the second one satis2, and so on. The SPSS names given
to the variables in the Job Survey are presented in Table 2.2.
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Defining other aspects of variables in Data Editor

We can define four other aspects of variables when naming them. In the Define
Variable dialog box (Box 2.3) there is a box entitled Variable Description
which lists the four aspects of Type:, Variable Label:, Missing Values:, and
Alignment:. The default setting of these four aspects is Numeric8.2 for
variable type, a blank space for variable label, None for missing values and
Right for alignment. If we wish to change any of these settings, then we select
the appropriate button in the box below entitled Change Settings. In general
and for our purposes the most important of these is Missing Values and the least
important is Alignment.

Defining missing values

In the Job Survey, we have missing values for income (cases 12 and 21),
satis2 (cases 1 and 2), satis3 (case 2), prody (case 1), and absence (case 31).
So we have to specify the appropriate missing value for each of these
variables, which is 0 for the first four (income, satis2, satis3, and prody) and
99 for the fifth variable called absence. We do this by selecting the Missing
Values…option which opens the Define Missing Values subdialog box shown
in Box 2.4. In our case we select Discrete Missing Values, type the
appropriate value in the first box and then select Continue. If we type in 0,
then None in the Define Variable dialog box will be replaced with 0. If the
data are being entered by someone else we need to let them know how missing
data for any of the variables are to be coded. We could enter this code here to
remind us what it is. Thus, in this example, missing data for all variables other
than absence can be defined as 0.

Defining variable type

The default variable type is Numeric8.2, which means that the variable is a
number which consists of eight digits, two of which are decimal places. For
most purposes it is easier to code all variables as numbers, as we have done for
the Job Survey. Since all our values are whole numbers which consist of a
maximum of five digits (for income for cases 47 and 65), this default value
would apply to all our variables. However, if we wished we could change it so
that it would be exact for each variable. We could specify, for example, that age
consists of two digits with no decimal places. To do this, we select
Type…which displays the Define Variable Type subdialog box presented in
Box 2.5. We delete the 8 in the box entitled Width: and type in 2, delete the 2
in the box entitled Decimal Places: and type in 0, and then select Continue.
Numeric8.2 in the Define Variable dialog box will be replaced with
Numeric2.0.
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Box 2.4 Define Missing Values subdialog box

Box 2.5 Define Variable Type subdialog box
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Defining variable and value labels

SPSS variable names are restricted to eight characters, which usually means that
they have to be abbreviated making their meaning less clear. Using this option,
variable labels can be created which will be displayed on the output. These
variable labels can be up to 120 characters long, although most output will not
present labels this long. For example, the SPSS variable name ethnicgp could
be labelled ethnic group. To do this, we select Labels…to open the Define
Labels subdialog box depicted in Box 2.6 and type in the appropriate variable
label in the box entitled Variable Label:.

Using this option we could also label the values of a variable by typing in the
value (e.g. 1) in the box entitled Value:, the label (e.g. white) in the box entitled
Value Label: and selecting Add. The value labels for the five ethnic groups in
the Job Survey are presented in Box 2.6. Value labels can be up to 60 characters
long, although most output will not show labels this long. To remove a label we
first select it and then Remove. To change a label, we first select it, make the
desired changes and then select Change.

Defining column format and alignment

It is unlikely that you would wish to change the width of the column in Data
Editor or the alignment of data within a column, but if you do, select Column
Format to open the Define Column Format subdialog box shown in Box 2.7
and make the desired changes.

Defining consecutive variables simultaneously

We can define consecutive variables simultaneously which have the same format
characteristics by selecting the Templates…option on the Data menu to display
the Template dialog box shown in Box 2.8. For instance, in the Job Survey the
missing value for all variables other than absence is coded as 0. Assume that all
these 23 variables are listed consecutively from ethnicgp to absence in Data
Editor. To assign 0 to the first 22 variables (ethnicgp to qual), we first select
them by putting the cursor on the first column, pressing the left button on the
mouse and, holding it down, moving the cursor to the 22nd column and then
releasing the left button. Next we carry out the following sequence:
 

�Data �Templates…[opens Template dialog box]
�Missing Values �Define >> �Missing Values…[opens Define
Missing Values subdialog box]
�Discrete missing values and type 0 in first box
�Continue [closes Define Missing Values subdialog box]
�OK [closes Template dialog box]
�OK [closes SPSS for Windows warning box]
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Saving data in Data Editor

When we want to leave SPSS or to work on another data set in the same session,
these data will be lost unless we save them as a file. We could save this file on
to the hard disk of the computer. However, the computer may be used by others
who may delete our files. Even if no one else is likely to use the computer, it is
necessary to make a back-up copy of our files on one or more floppy disks in
case we should lose them. The floppy disk is inserted into a slot called a drive
and needs to be formatted if new. One way of formatting a floppy disk in
Windows 95 is to put the disk into the drive and then select Windows Explorer,
followed by My Computer, 3 1/2 Floppy [A:], File and then Format as shown
in Box 2.9.

To be able to retrieve a file, we need to give it a name. This name can consist
of a prefix or stem of up to eight characters followed by a full stop and a suffix
or extension of three characters. The stem name usually refers to the content of
the file (such as jsr in the case of our Job Survey raw data file), while the
extension name refers to the type of file. The default extension name for files in
Data Editor is sav. Thus, we could call our data file jsr.sav.

Box 2.6 Define Labels subdialog box
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Box 2.7 Define Column Format subdialog box

Box 2.8 Template dialog box
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Box 2.9 Formatting a disk

Box 2.10 Save Data As dialog box
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To save this file on a floppy disk in Drive A, we carry out the following
sequence:

�File �Save As…[opens Save Data As dialog box shown in Box 2.10]
type a:\jsr.sav in box beside File name: �Save

Retrieving a saved Data Editor f ile

To retrieve this file at a later stage when it is no longer the current file, use the
following procedure:

�File �Open [opens Open File dialog box shown in Box 2.11]
�box beside Look in: � 3 ½ Floppy [A:] � Jsr.sav � Open

Reading an ASCII data file in Data Editor

If the data have been saved on a floppy disk as an ASCII file, then carry out the
following sequence to put it in Data Editor:

�File �Read ASCII Data… �Fixed Columns [shown in Box 2.12;
opens Define Fixed Variables dialog box shown in Box 2.13]
� Browse…[opens Browse subdialog box shown in Box 2.14]
�locate ASCII file �Open [closes Browse subdialog box]
�in box beside Name: type name of first variable [e.g. ethnicgp] �box
beside Start Column: and in it type starting column number [e.g. 4] �box
beside End Column: and in it type end column number [e.g. 4] �Add
�repeat the sequence in this subdialog box for all variables �OK [closes
Define Fixed Variables dialog box]

We can omit id because there is only one record per case and the rows are
already numbered. If there was more than one record per case, it would be
useful to include the id. The SPSS variable names and the start and end
columns they occupy are presented in Table 2.2. When a variable only
occupies one column, just the start column number need be entered (e.g. 4 for
ethnicgp).

We then have to define the code for the missing values of each variable
separately using the Define Missing Values option as described above.

STATISTICAL PROCEDURES

After entering the data set in Data Editor, we are now ready to analyze it. The
rest of the book describes numerous ways in which you can do this. To show
you how this is generally done, we will ask SPSS to calculate the average or
mean age of the sample. This can be done with a number of SPSS commands,
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Box 2.11 Open File dialog box

Box 2.12 File drop-down menu



34 First steps with SPSS 8 for Windows

Box 2.13 Define Fixed Variables dialog box

Box 2.14 Browse subdialog box
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but we shall use the one called Descriptives. This works out a number of other
descriptive statistics as well. The procedure for doing this is:

�Statistics �Summarize �Descriptives…[opens Descriptives dialog
box shown in Box 2.15]
�variable [e.g. age; note variables are listed in their order in Data Editor]
��button [puts the selected variable in box under Variable[s]:] �OK

The output for this procedure is displayed in the Viewer window as shown in
Table 2.3. The mean age is 39.19. The other descriptive statistics provided by
default are the standard deviation (see Chapter 5), the minimum age, the
maximum age, and the number of cases (N) on which this information is based.
If we look at the ages in our Job-Survey data, then we can confirm that the
minimum age is indeed 18 (for the first case) while the maximum is 63 (for case
number 5). We should also notice that the age for one of our participants (case
number 45) is missing, making the number of cases which provide valid data for
this variable 69 and not 70.

As shown in Table 2.3 the output in the Viewer window will always be
preceded by the name of the statistical procedure. In this case, it is Descriptives.
These titles will be omitted from subsequent presentations of output to save
space.

If we wanted just the mean age and not the other statistics, then we could
do this by selecting Options…in the Descriptives dialog box to open the
Descriptives: Options subdialog box shown in Box 2.16 and de-selecting
Std.deviation, Minimum and Maximum by moving the cursor on to them
and pressing the left button. The output for this procedure is presented in
Table 2.4.
 

Box 2.15 Descriptives dialog box
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Box 2.16 Descriptives: Options subdialog box

Table 2.3 Default Descriptives output

Table 2.4 Descriptives Mean output
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If you want to revert to the Data Editor, either select Jsr—SPSS Data
Editor at the bottom of the screen or select the Window option and then 1
Jsr—SPSS Data Editor from the drop-down menu. If an SPSS operation has
been started but not completed (in that all dialog boxes concerned with that
operation have not been closed), scrolling through the Viewer will not be
possible.

SAVING AND PRINTING OUTPUT

To print the contents of any window, enter that window and then execute the
following sequence

�File �Print… �OK
 
If you want to store the contents of any window on a floppy disk, then carry out
the following steps:
 

�File �Save As �window [opens Save As dialog box]
�type the drive and file name in the box beside File name: [e.g. a:\jsr.spo]
�Save

 
The default extension name for output files is spo which is short for spss output
file. You can edit output files before saving them. For example, you may wish to
delete certain analyses or type in some further explanation.

HELP SYSTEM

SPSS has a Help system which you may like to use to avoid having to refer to
a book like this one or to find out more about the program. As this system is
meant to be self-explanatory you should be able to learn to use it yourself after
a little experience. To find help on a topic such as file, carry out the following
procedure:
 

�Help �Topics [opens Help Topics window shown in Box 2.17]
�in first box type in the appropriate or closest term [e.g. file] �Search
[to list terms] �appropriate or closest term [e.g. Open file] �Display
[opens Help information box shown in Box 2.18] �? [to Minimise or
Close the Help system]

 
If you want help while in a dialog box, select the Help option in the dialog
box.
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Box 2.17 Help Topics dialog box

Box 2.18 Help information box
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LEAVING SPSS

To leave SPSS, select File and then Exit. If you have edited or analyzed data
in a session, you will be asked if you wish to save the contents in the data
editor or output viewer. If you don’t, select No. If you do, select Yes and
name the file if you have not already done so. This means, for example, that if
you exit without saving any changes that you may need to keep, those changes
will be lost.

EXERCISES

1. You need to collect information on the religious aff iliation of your
respondents. You have thought of the following options: agnostic, atheist,
Buddhist, Catholic, Jewish, Hindu, Muslim, Protestant and Taoist. Which
further category has to be included?

2. You want to record this information in a data file to be stored in a computer.
How would you code this information?

3. Looking through your completed questionnaires, you notice that on one of
them no answer has been given to this question. What are you going to put
in your data file for this person?

4. Suppose that on another questionnaire two categories had been ticked by the
respondent. How would you deal with this situation?

5. The first two of your sample of fifty participants describe themselves as
agnostic and the second two as atheists. The ages of these four participants
are 25, 47, 33, and 18. How would you arrange this information in your data
file?

6. If data are available for all the options of the religious affiliation question,
how many columns in an ASCII f ile would be needed to store this infor-
mation?

7. How does SPSS know to what the numbers in the data file refer?

8. How many columns to a line are there in most computers for listing data?

9. What is the maximum number of characters that can be used for the name
of a variable in SPSS?
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Appendix 2.1: The Job-Survey questions

EMPLOYEE QUESTIONNAIRE

This questionnaire is designed to find out a few things about yourself and your
job. Please answer the questions truthfully. There are no right or wrong answers.
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SUPERVISOR QUESTIONNAIRE

I would be grateful if you could answer the following questions about one of the
people for whom you act as supervisor—[Name of Employee].



Chapter 3

Analyzing data with

computers
Further steps with SPSS 8 for
Windows

Now that we have described how you generally set up and analyze a data file,
we can introduce you to some further procedures which you may find very
useful. These procedures will enable you to do the following: select certain
cases (such as all white men under the age of 40) for separate analyses; and
create new variables (such as scoring an attitude or personality scale) and new
data files to store them. SPSS can also carry out other operations which are not
described in this book, such as combining files in various ways. If you want to
do things which are not mentioned here, then consult the Help system or SPSS
Guide.

SELECTING CASES

To select cases with certain characteristics, you select Data and Select
Cases…which opens the Select Cases dialog box shown in Box 3.1. If, for
example, you wanted to find out the average age of only the men in the Job-
Survey sample, select If condition is satisfied and then If…which opens the
Select Cases: If subdialog box presented in Box 3.2. In the empty box you enter
the condition(s) cases must satisfy if they are to be selected. In this instance, we
select in sequence gender=1 since men are coded 1. We then select Continue to
close the Select Cases: If subdialog box and OK to close the Select Cases
dialog box.

To calculate just the mean age of men we carry out the following sequence:

�Statistics �Summarize �Descriptives…
�age ��button �Options…
�Std.deviation [to de-select] �Minimum �Maximum
�Continue
�OK

The output for this procedure is presented in Table 3.1.
This selection will remain in force until you change it. If you want to carry

out statistical analyses on the whole sample or on females, you need to alter

42
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Box 3.1 Select Cases dialog box

Box 3.2 Select Cases: If subdialog box
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the selection. For analyses on the whole sample you would need to select All
cases while for those on women you would have to enter the conditional
expression gender=2.

RELATIONAL OPERATORS

A relational operator like=compares the value on its left (for example, gender)
with that on its right (for example, 1). There are six such operators, which are
represented by the following symbols:

= equal to
~= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

The question of which is the most appropriate operator to use in selecting cases
will depend on the selection criteria. To select cases under 40 years of age, we
could use less than (<):

age<40

It would also, of course, have been possible to use less than or equal to (<=)
39 in this instance since we are dealing with whole numbers:

age<=39

To select non-whites, we could use not equal to (~=) 1 since whites are coded 1:

ethnicgp~=1

COMBINING LOGICAL RELATIONS

We can combine logical expressions with the logical operators & (and) and |
(or). For example, we can select white men under 40 with the following
conditional expression:

ethnicgp=1 & gender=1 & age<40

Table 3.1 Mean age of men in the Job Survey
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To select people of only West Indian and African origin, we would have to use
the | (or) logical operator:

ethnicgp=3|ethnicgp=4

Note that it is necessary to repeat the full logical relation. It is not permissible
to abbreviate this command as:

ethnicgp=3|4

An alternative way of doing the same thing is to use the any logical function
where any case with a value of either 3 or 4 for the variable ethnicgp is selected:

any (ethnicgp,3,4)

The variable and the values to be selected are placed in parentheses.
To select people between the ages of 30 and 40 inclusively, we can use the

expression:

age>=30 & age<=40

Here, we have to use the & (and) logical operator. If we used | (or), we would
in effect be selecting the whole sample since everybody is either above 30 or
below 40 years of age.

Another way of selecting people aged 30 to 40 inclusively is to use the range
logical function where any case with a value in the range of 30 to 40 for the
variable age is selected:

range (age,30,40)

RECODING THE VALUES OF VARIABLES

Sometimes it is necessary to change or to recode the values of some variables.
For example, it is recommended that the wording of questions which go to make
up a scale or index should be varied in such a way that people who say yes to
everything (yeasayers) or no (naysayers) do not end up with an extreme score.
To illustrate this, we have worded two of the four questions assessing job
satisfaction in the Job Survey on pp. 40–41 (‘6c Most of the time I have to force
myself to go to work’ and ‘6e My job is pretty uninteresting’) in the opposite
direction from the other two (‘6b My job is like a hobby to me’ and ‘6d Most
days I am enthusiastic about my work’). These questions are answered in terms
of a 5-point scale ranging from 1 (‘strongly disagree’) to 5 (‘strongly agree’).
While we could reverse the numbers for the two negatively worded items (6c
and 6e) on the questionnaire, this would draw the attention of our respondents
to what we were trying to accomplish. It is simpler to reverse the coding when
we come to analyze the data. Since we want to indicate greater job satisfaction
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with a higher number, we will recode the answers to the two negatively worded
questions, so that 1 becomes 5, 2 becomes 4, 4 becomes 2, and 5 becomes 1.

We can do this with the Recode procedure which is on the Transform menu.
We can recode values using either the same (Into Same Variables…) or
different (Into Different Variables…) variable names.

If we want to compare the original values with the recoded ones or if we want
to retain the original values, we use the Into Different Variables… option
which opens the Recode into Different Variables dialog box presented in Box
3.3. For instance, if we wish to recode satis2 and satis4 into the respective two
new variables of rsatis2 and rsatis4, we select satis2 which puts it in the box
entitled Numeric Variable -> Output Variable:, type the new variable name of
rsatis2 in the box entitled Name: select Change and repeat the procedure for
satis4, renaming it rsatis4.

Then we select Old and New Values…which opens the Recode into
Different Variables: Old and New Values subdialog box displayed in Box 3.4.
In the box entitled Value: (in the Old Value section where the V of Value: is
underlined to distinguish it from Value: in the New Value section where the 1
of Value: is underscored) we type the first value to be changed (e.g. 1) while in
the box called Value: (in the New Value section) we type the new value (e.g. 5)
and select Add. We do this consecutively for the three other old values of 2, 4,
and 5. For the values which remain the same (e.g. 3) we can type the old value
in the box called Value:, and select Copy old value[s] and Add. The values for
each case are recoded from left to right and are only changed once so that when
1 is initially recoded as 5 (1->5) in the above example, it is not subsequently
reconverted to 1 (5->1). If there are missing values, as in this case, select
System- or user-missing (in Old Value section) and System-missing (in New
Value section).

Box 3.3 Recode into Different Variables dialog box
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After doing this we select Continue to close the Recode into Different
Variables: Old and New Values subdialog box and OK to close the Recode
into Different Variables dialog box. We can then check the recoded values in
the appropriate columns (satis2, rsatis2, satis4, and rsatis4) in the Data
Editor.

Alternatively, we can check the recoded values of rsatis2 and rsatis4 by
selecting Summarize Cases and listing the values of satis2, rsatis2, satis4, and
rsatis4 for, say, the first 10 cases as shown in Table 3.2.
 

�Statistics �Summarize �Case Summaries…[opens Summarize
Cases dialog box shown in Box 3.5]
�select variables [e.g. satis2] ��button �Limit cases to first and type
number [e.g. 10]
�OK

If we do not want to retain the original values, we select the Into Same
Variables…option which opens the Recode Into Same Variables dialog box
presented in Box 3.6. For example, if we want to recode satis2 and satis4 we
select them, which puts them in the box entitled Variables:.

We then proceed as previously by selecting Old and New Values…which
opens the Recode into Same Variables: Old and New Values subdialog box
displayed in Box 3.7. In the box entitled Value: (in the Old Value section) we
type the first value to be changed (e.g. 1) while in the box called Value: (in the
New Value section) we type the new value (e.g. 5) and select Add. We do this
consecutively for the three other old values of 2, 4 and 5. We can also do this for

Box 3.4 Recode into Different Variables: Old and New Values subdialog box
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Table 3.2 Case Summaries output showing receded values of rsatis2 and rsatis4

Box 3.5 Summarize Cases dialog box

a. Limited to first 10 cases.
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3. If there are missing values, as in this case, select System- or user-missing (in
Old Value section) and System-missing (in New Value section).

Alternatively, we can select All other values, type 3 in the box called Value:
(in the New Value section) and select Add.

After doing this we select Continue to close the Recode into Same
Variables: Old and New Values subdialog box and OK to close the Recode
into Same Variables dialog box.

Box 3.6 Recode into Same Variables dialog box

Box 3.7 Recode into Same Variables: Old and New Values subdialog box
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For each variable there can only be one new value, whereas there can be any
number of old values. For example, if we wished to form a 3-point scale with
only one agree, one disagree, and one undecided answer, we could do this by
receding 1 and 2 into 1, 3 into 2, and 4 and 5 into 3. Since only one value can
be entered at a time into the box entitled Value we would have to do this
sequentially.

We can specify a range of old values by selecting the Range: option (which
is distinguished by having the n of Range: underlined) and typing the lowest
value in the first box and the highest value in the second box. For example, we
could recode ethnic group into whites and non-whites by putting 3 into the first
box and 5 into the second box and receding 3 through 5 as 2.

If we do not wish to find out what the lowest value is, we can specify it by
selecting Range:. If we wanted to specify the highest value without determining
what it was, we would select Range:. For example, we could use these options
to categorize our sample into those 40 years old or above and those below by
receding the Lowest through 39 as 1 and the 40 through highest as 2.

If we had ages which were not whole numbers and which fell between 39 and
40, such as 39.9, they would not be recoded. To avoid this problem, we would
use overlapping end-points so that Lowest through 40 is recoded as 1 and 40
through highest as 2. In this example all people aged 40 and less would be
coded as 1. Since values are recoded consecutively and once only, age 40 will
not also be recoded as 2.

COMPUTING A NEW VARIABLE

Sometimes we want to create a new variable. For example, we have used four
items to assess what may be slightly different aspects of job satisfaction. Rather
than treat these items as separate measures, it may be preferable and reasonable
to combine them into one index. To do this, we select the Compute… procedure
on the Transform menu which displays the Compute Variable dialog box
shown in Box 3.8. We can use this procedure to create a new variable called
satis by adding together satis1, the recoded rsatis2, satis3 and the recoded
rsatis4. We do this by first typing the name of the new variable satis in the box
entitled Target Variable:. Then, scrolling through the functions, we select
SUM(numexpr,numexpr,…) which is entered into the box entitled Numeric
Expression:. In this box we replace the ?,? with satis1,rsatis2, satis3,rsatis4
and then select OK. If the items had the same stem of satis and were listed
sequentially, we need list only the first item (satis1) followed by to and the last
item (satis4).

If we look at the value of satis in the Data Editor we see that it is 9.00 for
the first case (3+44–2=9.00), 5.00 for the second case (2+3=5.00) and 15.00 for
the third case (4+2+4+5=15.00). Once again, we could list the appropriate
values for a selection of cases by using the Case Summaries… procedure.
Table 3.3 shows the output for the first 10 cases.
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MISSING DATA AND COMPUTING SCORES TO
FORM NEW MEASURES

As we have seen, the satis1 score for the first participant and the satis1 and
satis2 scores for the second participant are missing. In research, it is quite
common for some scores to be missing. Participants may omit to answer
questions, they may circle two different answers to the same question, the
experimenter may forget to record a response, and so on. It is important to

Box 3.8 Compute Variable dialog box

Table 3.3 Case Summaries output showing values of satis1, rsatis2, satis3, rsatis4
and satis
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consider carefully how you are going to deal with missing data. If many of the
data for one particular variable are missing, this suggests that there are problems
with its measurement which need to be sorted out. Thus, for example, it may be
a question which does not apply to most people, in which case it is best omitted.
If many scores for an individual are missing, it is most probably best to omit this
person from the sample since there may be problems with the way in which
these data were collected. Thus, for example, it could be that the participant was
not paying attention to the task at hand.

Where data for an index such as job routine are missing for some individuals,
it is not appropriate to use the sum of the responses as an index since the total
score will not reflect the same number of responses. For example, someone who
answers ‘strongly agree’ (coded 5) to all four job routine items will have a total
score of 20 whereas someone who strongly agrees with all items but who, for
some reason, did not give an answer to one of them will have a total score of
only 15. In other words, when we have missing data for items that constitute an
index we need to take account of the missing data. In this situation a more
appropriate index is the mean score of the non-missing values which would be
5 for the first (20/4=5) and for the second (15/3=5) individual. Another
advantage of using the mean score for a scale such as job routine is that the
mean score now corresponds to the answers to the individual items, so that an
average score of 4.17 indicates that that person generally answers ‘agree’ to
those items.

However, we would not generally want to derive an average score for
someone who has a relatively large amount of data missing. A criterion
sometimes applied to what constitutes too much missing data is if more than 10
per cent of the data are missing for an index, then the index itself is defined as
missing for that participant. If we applied this principle to the two participants
in the Job Survey, no score for job satisfaction would be computed for them,
although they would have scores for job routine and autonomy.

To compute a mean score we use the MEAN(numexpr,numexpr,…)
function in the Compute Variable dialog box. If we want to specify a minimum
number of values that must be non-missing for the mean to be produced we type
a full stop after MEAN, followed by the minimum number. We will use the four
satis items to illustrate how this is done. With only four items, we cannot use a
cut-off point of more than 10 per cent for exclusion as missing. Therefore, we
will adopt a more lenient criterion of more than 50 per cent. If more than 50 per
cent (i.e. 2 or more) of the scores for the job satisfaction items are missing, we
will code that variable for participants as missing. In other words, the minimum
number of values that must be non-missing for the mean to be computed is 3. As
before, the new variable is called satis but the numeric expression in the
Numeric Expression: is MEAN.3(satis1, rsatis2, satis3, rsatis4). If we
examine the new values of satis in the Data Editor we see that it is 3.00 for the
first case (9.00/3=3.00),. for the second case (since there are only two valid
values) and 3.75 for the third case (15.00/4=3.75).
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To display the mean value as a zero when it is missing, we use the Recode
into Same Variables procedure in which we select System-missing in the box
called Old Value and enter 0 in the box called Value: (in the New Value
section) and select Add.

To convert this mean score back into a total score (which takes into account
numbers of valid scores that might vary between three and four), we simply
multiply this mean by the maximum number of items which is 4. To do this we
use the Compute Variable procedure where the new variable is still called satis
and where the numeric expression is satis * 4.

Since we wish to form three new variables (job satisfaction, job autonomy
and job routine), we have to repeat this Compute Variable procedure for the
job routine and job autonomy items. Although we know there are no missing
values for these two sets of variables, it does no harm to be cautious and assume
there may be some as we have done. To determine if there are any rogue or
missing values in data sets with which we are unfamiliar, we use the
Frequencies procedure (see Chapter 5).

Aggregate measures of job satisfaction, job autonomy and job routine used in
subsequent chapters have been based on summing the four items within each
scale and assigning the summed score as missing where more than 10 per cent
of the items were missing. Since 2 of the 70 cases in the Job Survey had one or
two of the answers to the individual job satisfaction items missing, the number
of cases for whom a summed job satisfaction score could be computed is 68.
The summed scores for job satisfaction, job autonomy and job routine have
been called satis, autonom and routine respectively. To do this for satis, for
example, we first compute the mean score with the numeric expression
MEAN.4(satis1 to satis4) and then convert this to a total score with the
numeric expression satis * 4.

When we have a data set which has a large number of variables which we
may not need for a particular set of analyses, we may find it more convenient to
create a new file which contains only those variables that we are going to
examine. For example, if we intend to analyze the aggregate variables of satis,
routine and autonom and not the individual items that constitute them, then we
can create a new file which holds these new variables (together with any of the
other variables we need) but which does not contain the individual items. We
delete the individual items by selecting the variable names satis1 to routine4 in
the Data Editor and selecting Edit and Cut. We then save the data in the Data
Editor in a new file which we will call ‘jssd.sav’ (for job scored survey data)
and which we will use in subsequent analyses.

EXERCISES

 
1. What is the SPSS procedure for selecting men and women of African origin

in the Job-Survey data?
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2. Write the conditional expression for SPSS to select women of Asian or West
Indian origin who are 25 years old or younger in the Job-Survey data.

3. What is the conditional expression for selecting participants who had no
missing job satisfaction scores in the Job-Survey data?

4. What is the SPSS procedure for receding the Job-Survey variable skill into
the same variable but with only two categories (unskilled/semi-skilled vs
fairly/highly skilled)?

5. What is the SPSS procedure for receding the variable income into the new
variable of incomec comprising three groups of those earning less than
£5,000, between £5,000 and under £10,000, and £10,000 and over, and
where missing values are assigned as zero?

6. Using the arithmetic operator *, express the variable weeks as days. In
other words, convert the number of weeks into the number of days.

 



Chapter 4

Concepts and their

measurement

Concepts form a linchpin in the process of social research. Hypotheses contain
concepts which are the products of our reflections on the world. Concepts
express common elements in the world to which we give a name. We may notice
that some people have an orientation in which they dislike people of a different
race from their own, often attributing to other races derogatory characteristics.
Still others are highly supportive of racial groups, perhaps seeing them as
enhancing the ‘host’ culture through instilling new elements into it and hence
enriching it. Yet others are merely tolerant, having no strong views one way or
the other about people of other racial groups. In other words, we get a sense that
people exhibit a variety of positions in regard to racial groups. We may want to
suggest that there is a common theme to these attitudes, even though the
attitudes themselves may be mutually antagonistic. What seems to bind these
dispositions together is that they reflect different positions in regard to ‘racial
prejudice’. In giving the various dispositions that may be held regarding persons
of another race a name, we are treating it as a concept, an entity over and above
the observations about racial hostility and supportiveness that prompted the
formulation of a name for those observations. Racial prejudice has acquired a
certain abstractness, so that it transcends the reflections that prompted its
formulation. Accordingly, the concept of racial prejudice becomes something
that others can use to inform their own reflections about the social world. In this
way, hypotheses can be formulated which postulate connections between racial
prejudice and other concepts, such as that it will be related to social class or to
authoritarianism.

Once formulated, a concept and the concepts with which it is purportedly
associated, such as social class and authoritarianism, will need to be
operationally defined, in order for systematic research to be conducted in
relation to it. An operational definition specifies the procedures (operations) that
will permit differences between individuals in respect of the concept(s)
concerned to be precisely specified. What we are in reality talking about here is
measurement, that is, the assignment of numbers to the units of analysis—be
they people, organizations, or nations—to which a concept refers. Measurement
allows small differences between units to be specified. We can say that someone
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who actively speaks out against members of other races is racially prejudiced,
while someone who actively supports them is the obverse of this, but it is
difficult to specify precisely the different positions that people may hold in
between these extremes. Measurement assists in the specification of such
differences by allowing systematic differences between people to be stipulated.

In order to provide operational definitions of concepts, indicators are
required which will stand for those concepts. It may be that a single indicator
will suffice in the measurement of a concept, but in many instances it will not.
For example, would it be sufficient to measure ‘religious commitment’ by
conducting a survey in which people are asked how often they attend church
services? Clearly it would not, since church attendance is but one way in which
an individual’s commitment to his or her religion may be expressed. It does not
cover personal devotions, behaving as a religious person should in secular
activities, being knowledgeable about one’s faith, or how far they adhere to
central tenets of faith (Glock and Stark 1965). These reflections strongly imply
that more than one indicator is likely to be required to measure many concepts;
otherwise our findings may be open to the argument that we have only tapped
one facet of the concept in question.

If more than one indicator of a concept can be envisaged, it may be necessary
to test hypotheses with each of the indicators. Imagine a hypothesis in which
‘organizational size’ was a concept. We might measure (i.e. operationally
define) this concept by the number of employees in a firm, its turnover or its net
assets. While these three prospective indicators are likely to be interconnected,
they will not be perfectly related (Child 1973), so that hypotheses about
organizational size may need to be tested for each of the indicators. Similarly, if
religious commitment is to be measured, it may be necessary to employ
indicators which reflect all of the facets of such commitment in addition to
church attendance. For example, individuals may be asked how far they endorse
central aspects of their faith in order to establish how far they adhere to the
beliefs associated with their faith.

When questionnaires are employed to measure concepts, as in the case of
religious commitment, researchers often favour multiple-item measures. In the
Job-Survey data, satis is an example of a multiple-item measure. It entails
asking individuals their positions in relation to a number of indicators, which
stand for one concept. Similarly, there are four indicators of both autonom and
routine. One could test a hypothesis with each of the indicators. However, if
one wanted to use the Job-Survey data to examine a hypothesis relating to satis
and autonom, each of which contains four questions, sixteen separate tests
would be required. The procedure for analyzing such multiple-item measures is
to aggregate each individual’s response in relation to each question and to treat
the overall measure as a scale in relation to which each unit of analysis has a
score. In the case of satis, autonom and routine, the scaling procedure is Likert
scaling, which is a popular approach to the creation of multiple-item measures.
With Likert scaling, individuals are presented with a number of statements
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which appear to relate to a common theme; they then indicate their degree of
agreement or disagreement on a five- or seven-point range. The answer to each
constituent question (often called an item) is scored, for example from 1 for
Strongly Disagree to 5 for Strongly Agree if the range of answers is in terms of
five points. The individual scores are added up to form an overall score for each
respondent. Multiple-item scales can be very long; the four satis questions are
taken from an often-used scale developed by Brayfield and Rothe (1951) which
comprised eighteen questions.

These multiple-item scales are popular for various reasons. First, a number of
items are more likely to capture the totality of a broad concept like job
satisfaction than a single question. Second, we can draw finer distinctions
between people. The satis measure comprises four questions which are scored
from 1 to 5, so that respondents’ overall scores can vary between 4 and 20. If
only one question was asked, the variation would be between 1 and 5—a
considerably narrower range of potential variation. Third, if a question is
misunderstood by a respondent, when only one question is asked that
respondent will not be appropriately classified; if a few questions are asked, a
misunderstood question can be offset by those which are properly understood.

It is common to speak of measures as variables, to denote the fact that units
of analysis differ in respect to the concept in question. If there is no variation in
a measure, it is a constant. It is fairly unusual to find concepts whose measures
are constants. On the whole, the social sciences are concerned with variables
and with expressing and analyzing the variation that variables exhibit. When
univariate analysis is carried out, we want to know how individuals are
distributed in relation to a single variable. For example, we may want to know
how many cases can be found in each of the categories or levels of the measure
in question, or we may be interested in what the average response is, and so on.
With bivariate analysis we are interested in the connections between two
variables at a time. For example, we may want to know whether the variation in
satis is associated with variation in another variable like autonom, or whether
men and women differ in regard to satis. In each case, it is variation that is of
interest.

TYPES OF VARIABLE

One of the most important features of an understanding of statistical operations
is an appreciation of when it is permissible to employ particular tests. Central to
this appreciation is an ability to recognize the different forms that variables take,
because statistical tests presume certain kinds of variable, a point that will be
returned to again and again in later chapters.

The majority of writers on statistics draw upon a distinction developed by
Stevens (1946) between nominal, ordinal and interval/ratio scales or levels of
measurement. First, nominal (sometimes called categorical) scales entail the
classification of individuals in terms of a concept. In the Job-Survey data, the
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variable ethnicgp, which classifies respondents in terms of five categories—
white, Asian, West Indian, African and other—is an example of a nominal
variable. Individuals can be allocated to each category, but the measure does no
more than this and there is not a great deal more that we can say about it as a
measure. We cannot order the categories in any way, for example.

This inability contrasts with ordinal variables, in which individuals are
categorized but the categories can be ordered in terms of ‘more’ and ‘less’ of the
concept in question. In the Job-Survey data, skill, prody and qual are all ordinal
variables. If we take the first of these, skill, we can see that people are not
merely categorized into each of four categories—highly skilled, fairly skilled,
semi-skilled and unskilled—since we can see that someone who is fairly skilled
is at a higher point on the scale than someone who is semi-skilled. We cannot
make the same inference with ethnicgp since we cannot order the categories
that it comprises. Although we can order the categories comprising skill, we are
still limited in the things that we can say about it. For example, we cannot say
that the skill difference between being highly skilled and fairly skilled is the
same as the skill difference between being fairly skilled and semi-skilled. All we
can say is that those rated as highly skilled have more skill than those rated as
fairly skilled, who in turn have greater skill than the semi-skilled, and so on.
Moreover, in coding semi-skilled as 2 and highly skilled as 4, we cannot say that
people rated as highly skilled are twice as skilled as those rated as semi-skilled.
In other words, care should be taken in attributing to the categories of an ordinal
scale an arithmetic quality that the scoring seems to imply.

With interval/ratio variables, we can say quite a lot more about the
arithmetic qualities. In fact, this category subsumes two types of variable—
interval and ratio. Both types exhibit the quality that differences between
categories are identical. For example, someone aged 20 is one year older than
someone aged 19, and someone aged 50 is one year older than someone aged
49. In each case, the difference between the categories is identical—one year. A
scale is called an interval scale because the intervals between categories are
identical. Ratio measures have a fixed zero point. Thus age, absence and income
have logical zero points. This quality means that one can say that somebody
who is aged 40 is twice as old as someone aged 20. Similarly, someone who has
been absent from work six times in a year has been absent three times as often
as someone who has been absent twice. However, the distinction between
interval and ratio scales is often not examined by writers because, in the social
sciences, true interval variables frequently are also ratio variables (e.g. income,
age). In this book, the term interval variable will sometimes be employed to
embrace ratio variables as well.

Interval/ratio variables are recognized to be the highest level of measurement
because there is more that can be said about them than with the other two types.
Moreover, a wider variety of statistical tests and procedures are available to
interval/ratio variables. It should be noted that if an interval/ratio variable like
age is grouped into categories—such as 20–29, 30–39, 40–49, 50–59, and so
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on—it becomes an ordinal variable. We cannot really say that the difference
between someone in the 40–49 group and someone in the 50–59 group is the
same as the difference between someone in the 20–29 group and someone in the
30–39 group, since we no longer know the points within the groupings at which
people are located. On the other hand, such groupings of individuals are
sometimes useful for the presentation and easy assimilation of information. It
should be noted too, that the position of dichotomous variables within the
threefold classification of types of variable is somewhat ambiguous. With such
variables, there are only two categories, such as male and female for the variable
gender. A dichotomy is usually thought of as a nominal variable, but sometimes
it can be considered an ordinal variable. For example, when there is an inherent
ordering to the dichotomy, such as passing and failing, the characteristics of an
ordinal variable seem to be present.

Strictly speaking, measures like satis, autonom and routine, which derive
from multiple-item scales, are ordinal variables. For example, we do not know
whether the difference between a score of 20 on the satis scale and a score of 18
is the same as the difference between 10 and 8. This poses a problem for
researchers since the inability to treat such variables as interval means that
methods of analysis like correlation and regression (see Chapter 8), which are
both powerful and popular, could not be used in their connection since these
techniques presume the employment of interval variables. On the other hand,
most of the multiple-item measures created by researchers are treated by them
as though they are interval variables because these measures permit a large
number of categories to be stipulated. When a variable allows only a small
number of ordered categories, as in the case of commit, prody, skill and qual
in the Job-Survey data, each of which comprises only either four or five
categories, it would be unreasonable in most analysts’ eyes to treat them as
interval variables. When the number of categories is considerably greater, as in
the case of satis, autonom and routine, each of which can assume sixteen
categories from 5 to 20, the case for treating them as interval variables is more
compelling.

Certainly, there seems to be a trend in the direction of this more liberal treat-
ment of multiple-item scales as having the qualities of interval variables. On
the other hand, many purists would demur from this position. Moreover, there
does not appear to be a rule of thumb which allows the analyst to specify when
a variable is definitely ordinal and when interval. None the less, in this book it
is proposed to reflect much of current practice and to treat multiple-item
measures such as satis, autonom and routine as though they were interval
scales. Labovitz (1970) goes further in suggesting that almost all ordinal vari-
ables can and should be treated as interval variables. He argues that the amount
of error that can occur is minimal, especially in relation to the considerable
advantages that can accrue to the analyst as a result of using techniques of
analysis like correlation and regression which are both powerful and relatively
easy to interpret. However, this view is controversial (Labovitz 1971) and
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whereas many researchers would accept the treatment of variables like satis as
interval, they would cavil about variables like commit, skill, prody and qual.
Table 4.1 summarizes the main characteristics of the types of scale discussed in
this section, along with examples from the Job-Survey data.

In order to help with the identification of whether variables should be
classified as nominal, ordinal, dichotomous, or interval/ratio, the steps
articulated in Figure 4.1 can be followed. We can take some of the Job-Survey
variables to illustrate how this table can be used. First, we can take skill. This
variable has more than two categories; the distances between the categories are
not equal; the categories can be rank ordered; therefore the variable is ordinal.
Now income. This variable has more than two categories; the distances between
them are equal; therefore the variable is interval/ratio. Now gender. This
variable does not have more than two categories; therefore it is dichotomous.
Finally, we can take ethnicgp. This variable has more than two categories; the
distances between the categories are not equal; the categories cannot be rank
ordered; therefore, the variable is nominal.

DIMENSIONS OF CONCEPTS

When a concept is very broad, serious consideration needs to be given to the
possibility that it comprises underlying dimensions which reflect different
aspects of the concept in question. Very often it is possible to specify those

Table 4.1 Types of variable
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Figure 4.1 Deciding the nature of a variable

dimensions on a priori grounds, so that possible dimensions are established in
advance of the formation of indicators of the concept. There is much to
recommend deliberation about the possibility of such underlying dimensions,
since it encourages systematic reflection on the nature of the concept that is to
be measured.

Lazarsfeld’s (1958) approach to the measurement of concepts viewed the
search for underlying dimensions as an important ingredient. Figure 4.2
illustrates the steps that he envisaged. Initially, the researcher forms an image
from a theoretical domain. This image reflects a number of common
characteristics, as in the previous example of job satisfaction which denotes the
tendency for people to have a distinctive range of experiences in relation to their
jobs. Similarly, Hall (1968) developed the idea of ‘professionalism’ as a
consequence of his view that members of professions have a distinctive
constellation of attitudes to the nature of their work. In each case, out of this
imagery stage, we see a concept starting to form. At the next stage, concept
specification takes place, whereby the concept is developed to show whether it
comprises different aspects or dimensions. This stage allows the complexity of
the concept to be recognized. In Hall’s case, five dimensions of professionalism
were proposed:
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1 The use of the professional organization as a major reference This means
that the professional organization and other members of the profession are
the chief source of ideas and judgements for the professional in the context
of his or her work.

2 A belief in service to the public According to this aspect, the profession is
regarded as indispensable to society.

3 Belief in self-regulation This notion implies that the work of a professional
can and should be judged only by other members of the profession, because
only they are qualified to make appropriate judgements.

4 A sense of calling to the field The professional is someone who is dedicated
to his or her work and would probably want to be a member of the profession
even if material rewards were less.

5 Autonomy This final dimension suggests that professionals ought to be able
to make decisions and judgements without pressure from either clients, the
organizations in which they work, or any other non-members of the
profession.

Not only is the concept specification stage useful in order to reflect and to
capture the full complexity of concepts, but it also serves as a means of bridging
the general formulation of concepts and their measurement, since the
establishment of dimensions reduces the abstractness of concepts.

The next stage is the selection of indicators, in which the researcher searches
for indicators of each of the dimensions. In Hall’s case, ten indicators of each
dimension were selected. Each indicator entailed a statement in relation to which
respondents had to answer whether they believed that it agreed Very Well, Well,
Poorly, or Very Poorly in the light of how they felt and behaved as members of
their profession. A neutral category was also provided. Figure 4.2 provides both
the five dimensions of professionalism and one of the ten indicators for each
dimension. Finally, Lazarsfeld proposed that the indicators need to be brought
together through the formation of indices or scales. This stage can entail either of
two possibilities. An overall scale could be formed which comprised all
indicators relating to all dimensions. However, more frequently, separate scales
are formulated for each dimension. Thus, in Hall’s research, the indicators
relating to each dimension were combined to form scales, so that we end up with
five separate scales of professionalism. As Hall shows, different professions
exhibit different ‘profiles’ in respect of these dimensions—one may emerge as
having high scores for dimensions 2, 3, and 5, moderate for 1, and low for 4,
whereas other professions will emerge with different combinations.

In order to check whether the indicators bunch in the ways proposed by an a
priori specification of dimensions, factor analysis, a technique that will be
examined in Chapter 11, is often employed. Factor analysis allows the
researcher to check whether, for example, all of the ten indicators developed to
measure ‘autonomy’ are really related to each other and not to indicators that
are supposed to measure other dimensions. We might find that an indicator
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that is supposed to measure autonomy seems to be associated with many of
the various indicators of ‘belief in service to the public’, while one or two of
the latter might be related to indicators which are supposed to denote ‘belief
in self-regulation’, and so on. In fact, when such factor analysis has been
conducted in relation to Hall’s professionalism scale, the correspondence
between the five dimensions and their putative indicators has been shown to
be poor (Snizek 1972; Bryman 1985). However, the chief point that should be
recognized in the foregoing discussion is that the specification of dimensions
for concepts is often an important step in the development of an operational
definition.

Some measurement is carried out in psychology and sociology with little (if
any) attention to the quest for dimensions of concepts. For example, the
eighteen-item measure of job satisfaction developed by Brayfield and Rothe
(1951), which was mentioned above, does not specify dimensions, though it is
possible to employ factor analysis to search for de facto ones. The chief point
that can be gleaned from this section is that the search for dimensions can
provide an important aid to understanding the nature of concepts and that, when
established on the basis of a priori reasoning, can be an important step in
moving from the complexity and abstractness of many concepts to possible
measures of them.

VALIDITY AND RELIABILITY OF MEASURES

It is generally accepted that when a concept has been operationally defined, in
that a measure of it has been proposed, the ensuing measurement device should
be both reliable and valid.

Reliability

The reliability of a measure refers to its consistency. This notion is often taken
to entail two separate aspects—external and internal reliability. External
reliability is the more common of the two meanings and refers to the degree of
consistency of a measure over time. If you have kitchen scales which register
different weights every time the same bag of sugar is weighed, you would have
an externally unreliable measure of weight, since the amount fluctuates over
time in spite of the fact that there should be no differences between the
occasions that the item is weighed. Similarly, if you administered a personality
test to a group of people, re-administered it shortly afterwards and found a poor
correspondence between the two waves of measurement, the personality test
would probably be regarded as externally unreliable because it seems to
fluctuate. When assessing external reliability in this manner, that is by
administering a test on two occasions to the same group of participants, test-
retest reliability is being examined. We would anticipate that people who scored
high on the test initially will also do so when retested; in other words, we would
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expect the relative position of each person’s score to remain comparatively
constant. The problem with such a procedure is that intervening events between
the test and the retest may account for any discrepancy between the two sets of
results. For example, if the job satisfaction of a group of workers is gauged and
three months later is re-assessed, it might be found that in general respondents
exhibit higher levels of satisfaction than previously. It may be that in the
intervening period they have received a pay increase or a change to their
working practices, or some grievance that had been simmering before has been
resolved by the time job satisfaction is retested. Also, if the test and retest are
too close in time, participants may recollect earlier answers, so that an artificial
consistency between the two tests is created. However, test-retest reliability is
one of the main ways of checking external reliability.

Internal reliability is particularly important in connection with multiple-item
scales. It raises the question of whether each scale is measuring a single idea,
and hence whether the items that make up the scale are internally consistent. A
number of procedures for estimating internal reliability exist, two of which can
be readily computed in SPSS. First, with split-half reliability the items in a scale
are divided into two groups (either randomly or on an odd-even basis) and the
relationship between respondents’ scores for the two halves is computed. Thus,
the Brayfield-Rothe job satisfaction measure, which contains eighteen items,
would be divided into two groups of nine, and the relationship between
respondents’ scores for the two halves would be estimated. A correlation
coefficient is then generated (see Chapter 8), which varies between 0 and 1 and
the nearer the result is to 1—and preferably at or over 0.8—the more internally
reliable is the scale. Second, the currently widely-used Cronbach’s alpha
essentially calculates the average of all possible split-half reliability
coefficients. Again, the rule of thumb is that the result should be 0.8 or above.
This rule of thumb is also generally used in relation to test-retest reliability.
When a concept and its associated measure are deemed to comprise underlying
dimensions, it is normal to calculate reliability estimates for each of the
constituent dimensions rather than for the measure as a whole. Indeed, if a
factor analysis confirms that a measure comprises a number of dimensions, the
overall scale will probably exhibit a low level of internal reliability, since the
split-half reliability estimates may be lower as a result.

Both split-half and alpha estimates of reliability can be easily calculated with
SPSS. It is necessary to ensure that all items are coded in the same direction.
Thus, in the case of satis it is necessary to ensure that the reverse items (satis2
and satis4) have been receded (using Recode) so that agreement is indicative of
job satisfaction. These two items have been recoded in the following illustration
as rsatis2 and rsatis4. In order to generate a reliability test of the four items that
make up satis, the following sequence would be used:
 

� Statistics � Scale � Reliability Analysis…[opens Reliability
Analysis dialog box shown in Box 4.1]
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�satis1, rsatis2, satis3 and rsatis4 while holding down the Ctrl button
[all four of the variables should be highlighted] ��button [puts satis1,
rsatis2, satis3 and rsatis4 in the Items: box] �Model: �Alpha in the
drop-down menu that appears
�OK

If split-half reliability testing is preferred, click on Split-half in the Model:
pull-down menu rather than Alpha. The output for alpha (Table 4.2) suggests
that satis is in fact internally reliable since the coefficient is 0.76. This is only
just short of the 0.8 criterion and would be regarded as internally reliable for
most purposes. If a scale turns out to have low internal reliability, a strategy for
dealing with this eventuality is to drop one item or more from the scale in order
to establish whether reliability can be boosted. To do this, select the
�Statistics…button in the Reliability Analysis dialog box. This brings up the
Reliability Analysis: Statistics subdialog box (shown in Box 4.2). Then select
�Scale if item deleted. The output shows the alpha reliability levels when each
constituent item is deleted. Of course, in the case of satis, this exercise would
not be necessary.

Table 4.2 Reliability Analysis output for satis (Job-Survey)

Box 4.1 Reliability Analysis dialog box
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Box 4.2 Reliability Analysis: Statistics subdialog box

Two other aspects of reliability—that is, in addition to internal and external
reliability—ought to be mentioned. First, when material is being coded for
themes, the reliability of the coding scheme should be tested. This problem
can occur when a researcher needs to code people’s answers to interview
questions that have not been pre-coded, in order to search for general
underlying themes to answers; or when a content analysis of newspaper
articles is conducted to elucidate ways in which news topics tend to be
handled. When such exercises are carried out, more than one coder should be
used and an estimate of inter-coder reliability should be provided to ensure
that the coding scheme is being consistently interpreted by coders. This
exercise would entail gauging the degree to which coders agree on the coding
of themes deriving from the material being examined. Second, when the
researcher is classifying behaviour an estimate of inter-observer reliability
should be provided. For example, if aggressive behaviour is being observed,
an estimate of inter-observer reliability should be presented to ensure that the
criteria of aggressiveness are being consistently interpreted. Methods of
bivariate analysis (see Chapter 8) can be used to measure inter-coder and
inter-observer reliability. A discussion of some methods which have been
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devised specifically for the assessment of inter-coder or inter-observer
reliability can be found in Cramer (1998).

Validity

The question of validity draws attention to how far a measure really measures
the concept that it purports to measure. How do we know that our measure of
job satisfaction is really getting at job satisfaction and not at something else? At
the very minimum, a researcher who develops a new measure should establish
that it has face validity, that is, that the measure apparently reflects the content
of the concept in question.

The researcher might seek also to gauge the concurrent validity of the
concept. Here the researcher employs a criterion on which people are known to
differ and which is relevant to the concept in question. For example, some
people are more often absent from work (apart from through illness) than
others. In order to establish the concurrent validity of our job satisfaction
measure we may see how far people who are satisfied with their jobs are less
likely than those who are not satisfied to be absent from work. If a lack of
correspondence was found, such as frequent absentees being just as likely to be
satisfied as not satisfied, we might be tempted to question whether our measure
is really addressing job satisfaction. Another possible test for the validity of a
new measure is predictive validity, whereby the researcher uses a future
criterion measure, rather than a contemporaneous one as in the case of
concurrent validity. With predictive validity, the researcher would take later
levels of absenteeism as the criterion against which the validity of job
satisfaction would be examined.

Some writers advocate that the researcher should also estimate the construct
validity of a measure (Cronbach and Meehl 1955). Here, the researcher is
encouraged to deduce hypotheses from a theory that is relevant to the concept.
For example, drawing upon ideas about the impact of technology on the
experience of work (e.g. Blauner 1964), the researcher might anticipate that
people who are satisfied with their jobs are less likely to work on routine jobs;
those who are not satisfied are more likely to work on routine jobs. Accordingly,
we could investigate this theoretical deduction by examining the relationship
between job satisfaction and job routine. On the other hand, some caution is
required in interpreting the absence of a relationship between job satisfaction
and job routine in this example. First, the theory or the deduction that is made
from it may be faulty. Second, the measure of job routine could be an invalid
measure of the concept.

All of the approaches to the investigation of validity that have been discussed
up to now are designed to establish what Campbell and Fiske (1959) refer to as
convergent validity. In each case, the researcher is concerned to demonstrate that
the measure harmonizes with another measure. Campbell and Fiske argue that
this process usually does not go far enough, in that the researcher should really
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be using different measures of the same concept to see how far there is
convergence. For example, in addition to devising a questionnaire-based
measure of job routine, a researcher could use observers to rate the
characteristics of jobs in order to distinguish between degrees of routineness in
jobs in the firm (e.g. Jenkins et al. 1975). Convergent validity would entail
demonstrating a convergence between the two measures, although it is difficult
to interpret a lack of convergence since either of the two measures could be
faulty. Many of the examples of convergent validation that have appeared since
Campbell and Fiske’s (1959) article have not involved different methods, but
have employed different questionnaire research instruments (Bryman 1989). For
example, two questionnaire-based measures of job routine might be used, rather
than two different methods. Campbell and Fiske went even further in suggesting
that a measure should also exhibit discriminant validity. The investigation of
discriminant validity implies that one should also search for low levels of
correspondence between a measure and other measures which are supposed to
represent other concepts. Although discriminant validity is an important facet of
the validity of a measure, it is probably more important for the student to focus
upon the various aspects of convergent validation that have been discussed. In
order to investigate both the various types of convergent validity and
discriminant validity, the various techniques covered in Chapter 8, which are
concerned with relationships between pairs of variables, can be employed.

EXERCISES

1. Which of the following answers is true: a Likert scale is (a) a test for validity;
(b) an approach to generating multiple-item measures; (c) a test for reliability;
or (d) a method for generating dimensions of concepts?

2. When operationalizing a concept, why might it be useful to consider the
possibility that it comprises a number of dimensions?

3. Consider the following questions which might be used in a social survey about
people’s drinking habits and decide whether the variable is nominal, ordinal,
interval/ratio or dichotomous:

(a) Do you ever consume alcoholic drinks?
Yes __
No __ (go to question 5)

(b) If you have ticked Yes to the previous question, which of the following
alcoholic drinks do you consume most frequently (tick one category
only)?
Beer __
Spirits __
Wine __
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Liqueurs __
Other __

(c) How frequently do you consume alcoholic drinks? Tick the answer that
comes closest to your current practice.
Daily __
Most days __
Once or twice a week __
Once or twice a month __
A few times a year __
Once or twice a year __

(d) How many units of alcohol did you consume last week? (We can assume
that the interviewer would help respondents to translate into units of
alcohol.)
Number of units ___

4. In the Job-Survey data, is absence a nominal, an ordinal, an interval/ratio,
or a dichotomous variable?

5. Is test-retest reliability a test of internal or external reliability?

6. What would be the SPSS procedure for computing Cronbach’s alpha for
autonom?

7. Following on from Question 6, would this be a test of internal or external
reliability?

8. A researcher develops a new multiple-item measure of ‘political
conservatism’. He/she administers the measure to a sample of individuals
and also asks them how they voted at the last general election in order to
validate the new measure. The researcher relates respondents’ scores to how
they voted. Which of the following is the researcher assessing: (a) the
measure’s concurrent validity; (b) the measure’s predictive validity; or (c) the
measure’s discriminant validity?

 
 



Chapter 5

Summarizing data

When researchers are confronted with a bulk of data relating to each of a
number of variables, they are faced with the task of summarizing the
information that has been amassed. If large amounts of data can be summarized,
it becomes possible to detect patterns and tendencies that would otherwise be
obscured. It is fairly easy to detect a pattern in a variable when, say, we have
data on ten cases. But once we go beyond about twenty, it becomes difficult for
the eye to catch patterns and trends unless the data are treated in some way.
Moreover, when we want to present our collected data to an audience, it would
be extremely difficult for readers to take in the relevant information. This
chapter is concerned with the various procedures that may be employed to
summarize a variable.

FREQUENCY DISTRIBUTIONS

Imagine that we have data on fifty-six students regarding which faculty they
belong to at a university (see Table 5.1). The university has only four faculties:
engineering, pure sciences, arts, and social sciences. Even though fifty-six is not
a large number on which to have data, it is not particularly easy to see how
students are distributed across the faculties. A first step that might be considered
when summarizing data relating to a nominal variable such as this (since each
faculty constitutes a discrete category) is the construction of a frequency
distribution or frequency table. The idea of a frequency distribution is to tell us
the number of cases in each category. By ‘frequency’ is simply meant the
number of times that something occurs. Very often we also need to compute
percentages, which tell us the proportion of cases contained within each
frequency, i.e. relative frequency. In Table 5.2, the number 11 is the frequency
relating to the arts category, i.e. there are eleven arts students in the sample,
which is 20 per cent of the total number of students.

The procedure for generating a frequency distribution with SPSS will be
addressed in a later section, but in the meantime it should be realized that all
that is happening in the construction of a frequency table is that the number of
cases in each category is added up. Additional information in the form of the
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percentage that the number of cases in each category constitutes is usually
provided. This provides information about the relative frequency of the
occurrence of each category of a variable. It gives a good indication of the relative
preponderance of each category in the sample. Table 5.2 provides the frequency
table for the data in Table 5.1. Percentages have been rounded up or down to a
whole number (using the simple rule that 0.5 and above are rounded up and below
0.5 are rounded down) to make the table easier to read. The letter n is often
employed to refer to the number of cases in each category (i.e. the frequency). An
alternative way of presenting a frequency table for the data summarized in Table
5.2 is to omit the frequencies for each category and to present only the relative
percentages. This approach reduces the amount of information that the reader
must absorb. When this option is taken, it is necessary to provide the total number
of cases (i.e. n=56) beneath the column of percentages.

Table 5.1 The faculty membership of fifty-six students
(imaginary data)

Eng=Engineering PS=Pure Sciences SS=Social Sciences
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Table 5.2 can readily be adapted to provide a diagrammatic version of the
data. Such diagrams are usually called bar charts or bar diagrams and are often
preferred to tables because they are more easily assimilated. A bar chart
presents a column for the number or percentage of cases relating to each
category. Figure 5.1 presents a bar chart for the data in Table 5.1 in terms of the
number of cases. On the horizontal axis the name of each category is presented.
There is no need to order them in any way (e.g. short to long bars). The bars
should not touch each other but should be kept clearly separate. It should be
realized that the bar chart does not provide more information than Table 5.2;
indeed, some information is lost—the percentages. Its main advantage is the
ease with which it can be interpreted, a characteristic that may be especially
useful when data are being presented to people who may be unfamiliar with
statistical material.

When a variable is at the interval/ratio level, the data will have to be grouped
in order to be presented in a frequency table. The number of cases in each
grouping must then be calculated. As an example, the Job-Survey data on
income may be examined. We have data on sixty-eight individuals (two are
missing), but if the data are not grouped there are thirty-three categories, which
are far too many for a frequency table. Moreover, the frequencies in each

Table 5.2 Frequency table for faculty
membership

Figure 5.1 Bar chart of data on faculty membership
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category would be far too small. In Table 5.3, a frequency table is presented of
the data on income. Six categories are employed. In constructing categories
such as these a number of points should be borne in mind. First, it is sometimes
suggested that the number of categories should be between six and twenty, since
too few or too many categories can distort the shape of the distribution of the
underlying variable (e.g. Bohrnstedt and Knoke 1982). However, it is not
necessarily the case that the number of categories will affect the shape of the
distribution. Also, when there are relatively few cases the number of categories
will have to fall below six in order for there to be a reasonable number of cases
in each category. On the other hand, a large number of categories will not be
easy for the reader to assimilate and in this regard Bohrnstedt and Knocke’s rule
of thumb that the upper limit should be twenty categories seems slightly high.
Second, the categories must be discrete. You should never group so that you
have categories like: 6,000 or less; 6,000–7000; 7,000–8,000; and so on. Which
categories would incomes of £6,000 and £7,000 belong to? Categories must be
discrete, as in Table 5.3, so that there can be no uncertainty about which one a
case should be allocated to. Note that in Table 5.3, the reader’s attention is
drawn to the fact that there are two missing cases. The presence of two missing
cases raises the question of whether percentages should be calculated in terms
of all seventy cases in the Job-Survey sample or the sixty-eight on whom we
have income data. Most writers prefer the latter since the inclusion of all cases
in the base for the calculation of the percentage can result in misleading
interpretations, especially when there might be a large number of missing cases
in connection with a particular variable.

The information in Table 5.3 can be usefully presented diagrammatically as
a histogram. A histogram is like a bar chart, except that the bars are in contact
with each other to reflect the continuous nature of the categories of the variable
in question. Figure 5.2 presents a histogram produced by SPSS for the income
data. Its advantages are the same as those for the bar chart.

If an ordinal variable is being analyzed, grouping of categories is rarely
necessary. In the case of the Job-Survey data, a variable like skill, which can
assume only four categories, will not need to be grouped. The number of cases
in each of the four categories can simply be added up and the percentages com
 

Table 5.3 Frequency table for income (Job-Survey data)

Note: Two cases are missing.
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Figure 5.2 Histogram for income data (Job-Survey data)

puted. A histogram can be used to display such data since the categories of the
variable are ordered.

Using SPSS to produce frequency tables and
histograms

In order to generate a frequency table for income, we will need to group the
data; otherwise we will get a frequency count and percentage for every single
income in the sample. We would have separate bars for each income within the
sample. In a large sample, that could represent a lot of bars. To group the data,
we will need to use the Recode procedure, In doing this, we will be creating a
new variable which will be called incomegp (i.e. income groups). The aim is to
group people into six income groups: £5,999 and below; £6,000–6,999;
£7,000–7,999; £8,000–8,999; £9,000–9,999; and £10,000 and above. The
following sequence will accomplish this:

�Transform �Recode �Into Different Variables…[opens Recode
into Different Variables dialog box shown in Box 5.1]
�income ��button [puts income in Numeric Variable-> Output
Variable: box] �box beneath Output Variable Name: and type
incomegp �Change [puts incomegp in Numeric Variable ->Output
Variable:  box] � Old and New Values…[opens Recode into
Different Variables: Old and New Values subdialog box shown in
Box 5.2]
�circle by Range: and type 1 in first box and type 5999 in box after
through �box by Value in New Value and type 1 �Add [the new value
will appear in the Old->New: box] �first box by Range: and type 6000



76 Summarizing data

Box 5.2 Recode into Different Variables: Old and New Values subdialog box

and in box after through type 6999 �box by Value in New Value and
type 2 �first box by Range: and type 7000 and in box after through type
7999 �box by Value in New Value and type 3 �box by Range: and type
8000 and in box after through type 8999 �box by Value in New Value
and type 4 �box by Range: and type 9000 and in box after through type
9999 �box by Value in New Value and type 5 �circle by Range: through
highest and type 10000 in box �box by Value in New Value and type 6

Box 5.1 Recoding income into incomegp
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�Add �Continue [closes Recode into Different Variables: Old and
New Values subdialog box]
�OK

It would then be necessary to define the value labels for the six categories of
incomegp (see Chapter 2 for a description of how this is done).

The following sequence will generate the frequency table output in Table 5.4:

�Statistics �Summarize �Frequencies…[opens Frequencies dialog
box shown in Box 5.3]
�incomegp ��button [puts incomegp in Variable[s]: box]
�OK

Table 5.4 Frequency table for incomegp

Box 5.3 Frequencies dialog box
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Table 5.4 provides the number of people in each category (Frequency) and
three percentages: the frequency associated with each category as a percentage
of all cases (Percent); the frequency associated with each category as a
percentage of all cases on which data exist and which therefore excludes the two
cases for whom data are missing (Valid Percent); and the cumulative
percentage (Cumulative Percent).

For a histogram of income, the following sequence should be followed:
 

�Graphs �Histogram…[opens Histogram dialog box]
�income ��button [puts income in Variable: box] �OK

 
To produce a bar chart for a nominal variable like ethnicgp, the following
sequence can be followed:
 

�Graphs �Bar…[opens Bar Charts dialog box shown in Box 5.4]
�Simple �Summaries for groups of cases �Define [opens Define
Simple Bar: Summaries for Groups of Cases subdialog box shown in
Box 5.5]
�ethnicgp ��button by Category Axis [puts ethnicgp in box] �N of
cases beneath Bars Represent [if this has not already been selected,
otherwise continue without doing this] �OK

 
An alternative way of presenting data relating to a nominal variable is a pie
chart, which displays the number of cases in each category in terms of slices

Box 5.4 Bar Charts dialog box
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Box 5.5 Define Simple Bar: Summaries for Groups of Cases subdialog box

of a circle. This can be a useful means of presenting data when the object is to
emphasize the relative size of each slice in relation to the sample as a whole.
Figure 5.3 presents a basic pie chart for ethnicgp generated by SPSS. Initially,
the following sequence should be followed:

Figure 5.3 Pie chart for ethnicgp
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�Graphs �Pie…[opens Pie Charts dialog box shown in Box 5.6]
� Summaries for groups of cases �Define [opens Define Pie:
Summaries for Groups of Cases subdialog shown in Box 5.7]
�ethnicgp ��button by Define slices by [puts ethnicgp in the box] �N
of cases beneath Slices Represent: [if this has not already been selected,
otherwise continue without doing this] �OK

A pie chart will be produced with each slice in a different colour. If you are
not able to print this out with a colour printer, you will need to edit the chart

Box 5.6 Pie Charts dialog box

Box 5.7 Define Pie: Summaries for Groups of Cases subdialog box
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so that each slice is distinguishable. The chart in Figure 5.3 was drawn using
two separate steps: white was applied to all of the slices and separate patterns
were applied to each slice. The following steps will achieve this:

double click anywhere in the chart

To fill each slice with white

�any slice in the chart, which will result in dots appearing around the edge
�Format �Color…[a palette of colours will appear] �Fill �white
�Apply �another slice and apply to this and all the other slices, though
it may be useful to have one slice in a very dark colour �Close

To create a different pattern for each slice:

�any slice in the chart, which will result in dots appearing around the edge
�Format �Fill pattern…[a palette of patterns will appear and you
should decide which ones you want] �chosen pattern �Apply �another
slice �another pattern [remember that you are applying a different pattern
to each slice] �Apply [and continue until each white slice has a different
pattern] �Close

Note that value labels will need to have been previously assigned to produce the
labels found in Figure 5.3. You can also create an ‘exploded’ pie effect (as in
Figure 5.3), whereby one slice becomes detached from the pie so that it can be
emphasized. To do this, click on the slice and then:

�Format �Exploded Slice

MEASURING CENTRAL TENDENCY

One of the most important ways of summarizing a distribution of values for a
variable is to establish its central tendency—the typical value in a distribution.
Where, for example, do values in a distribution tend to concentrate? To many
readers this may mean trying to find the ‘average’ of a distribution of values.
However, statisticians mean a number of different measures when they talk
about averages. Three measures of average (i.e. central tendency) are usually
discussed in text-books: the arithmetic mean, the median and the mode. Stephen
J.Gould, a palaeontologist who is well known for his popular writings on
science, illustrates the first two of these measures of average when he writes:
 

A politician in power might say with pride, ‘The mean income of our
citizens is $15,000 per year.’ The leader of the opposition might retort,
‘But half our citizens make less than $10,000 per year.’ Both are right,
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but neither cites a statistic with impassive objectivity. The first invokes
a mean, the second a median. (1991:473)

While this comment does little to reassure us about the possible misuse of
statistics, it does illustrate well the different ways in which average can be
construed.

The arithmetic mean

The arithmetic mean is a method for measuring the average of a distribution
which conforms to most people’s notion of what an average is. Consider the
following distribution of values:

12 10 7 9 8 15 2 19 7 10 8 16

The arithmetic mean consists of adding up all of the values (i.e. 123) and
dividing by the number of values (i.e. 12), which results in an arithmetic mean
of 10.25. It is this kind of calculation which results in such seemingly bizarre
statements as ‘the average number of children is 2.37’. However, the arithmetic
mean, which is often symbolised as x¯, is by far the most commonly used
method of gauging central tendency. Many of the statistical tests encountered
later in this book are directly concerned with comparing means deriving from
different samples or groups of cases (e.g. analysis of variance—see Chapter 7).
The arithmetic mean is easy to understand and to interpret, which heightens its
appeal. Its chief limitation is that it is vulnerable to extreme values, in that it
may be unduly affected by very high or very low values which can respectively
increase or decrease its magnitude. This is particularly likely to occur when
there are relatively few values; when there are many values, it would take a very
extreme value to distort the arithmetic mean. For example, if the number 59 is
substituted for 19 in the previous distribution of twelve values, the mean would
be 13.58, rather than 10.25, which constitutes a substantial difference and could
be taken to be a poor representation of the distribution as a whole. Similarly, in
Table 8.11 in Chapter 8, the variable ‘size of firm’ contains an outlier (case
number 20) which is a firm of 2,700 employees whereas the next largest has 640
employees. The mean for this variable is 499, but if we exclude the outlier it is
382.6. Again, we see that an outlier can have a very large impact on the
arithmetic mean, especially when the number of cases in the sample is quite
small.

The median

The median is the mid-point in a distribution of values. It splits a distribution of
values in half. Imagine that the values in a distribution are arrayed from low to
high, e.g. 2, 4, 7, 9, 10, the median is the middle value, i.e. 7. When there is an
even number of values, the average of the two middle values is taken. Thus, in
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the former group of twelve values, to calculate the mean we need to array them
as follows:

2 7 7 8 8 9 10 10 12 15 16 19.

Thus in this array of twelve values, we take the two underlined values—the
sixth and seventh—and divide their sum by 2, i.e. (9+10)/2=9.5. This is slightly
lower than the arithmetic mean of 10.25, which is almost certainly due to the
presence of three fairly large values at the upper end—15, 16, 19. If we had the
value 59 instead of 19, although we know that the mean would be higher at
13.58 the median would be unaffected, because it emphasizes the middle of the
distribution and ignores the ends. For this reason, many writers suggest that
when there is an outlying value which may distort the mean, the median should
be considered because it will engender a more representative indication of the
central tendency of a group of values. On the other hand, the median is less
intuitively easy to understand and it does not use all of the values in a
distribution in order for it to be calculated. Moreover, the mean’s vulnerability
to distortion as a consequence of extreme values is less pronounced when there
is a large number of cases.

The mode

This final indicator of central tendency is rarely used in research reports, but is
often mentioned in textbooks. The mode is simply the value that occurs most
frequently in a distribution. In the foregoing array of twelve values, there are
three modes—7, 8, and 10. Unlike the mean, which strictly speaking should
only be used in relation to interval variables, the mode can be employed at any
measurement level. The median can be employed in relation to interval and
ordinal, but not nominal, variables. Thus, although the mode appears more
flexible, it is infrequently used, in part because it does not use all of the values
of a distribution and is not easy to interpret when there are a number of modes.

MEASURING DISPERSION

In addition to being interested in the typical or representative score for a
distribution of values, researchers are usually interested in the amount of
variation shown by that distribution. This is what is meant by dispersion—how
widely spread a distribution is. Dispersion can provide us with important
information. For example, we may find two roughly comparable firms in which
the mean income of manual workers is identical. However, in one firm the
salaries of these workers are more widely spread, with both considerably lower
and higher salaries than in the other firm. Thus, although the mean income is the
same, one firm exhibits much greater dispersion in incomes than the other. This
is important information that can usefully be employed to add to measures of
central tendency.
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The most obvious measure of dispersion is to take the highest and lowest
value in a distribution and to subtract the latter from the former. This is known
as the range. While easy to understand, it suffers from the disadvantage of being
susceptible to distortion from extreme values. This point can be illustrated by
the imaginary data in Table 5.5, which shows the marks out of a hundred
achieved on a mathematics test by two classes of twenty students, each of which
was taught by a different teacher. The two classes exhibit similar means, but the
patterns of the two distributions of values are highly dissimilar. Teacher A’s
class has a fairly bunched distribution, whereas that of Teacher B’s class is
much more dispersed. Whereas the lowest mark attained in Teacher A’s class is
57, the lowest for Teacher B is 45. Indeed, there are eight marks in Teacher B’s
class that are below 57. However, whereas the highest mark in Teacher A’s class
is 74, three of Teacher B’s class exceed this figure—one with a very high 95.
Although the latter distribution is more dispersed, the calculation of the range
seems to exaggerate its dispersion. The range for Teacher A is 74–57, i.e. a
range of 17. For Teacher B, the range is 95–45, i.e. 50. This exaggerates the
amount of dispersion since all but three of the values are between 72 and 45,
implying a range of 27 for the majority of the values.

One solution to this problem is to eliminate the extreme values. The inter-
quartile range, for example, is sometimes recommended in this connection (see

Table 5.5 Results of a test of mathematical ability for the
students of two teachers (imaginary data)
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Figure 5.4). This entails arraying a range of values in ascending order. The array
is divided into four equal portions, so that the lowest 25 per cent are in the first
portion and the highest 25 per cent are in the last portion. These portions are
used to generate quartiles. Take the earlier array from which the median was
calculated:

The first quartile (Q1), often called the ‘lower quartile’ will be between 7 and 8
and is calculated as ([3×7]+8)/4, i.e. 7.25. The third quartile (Q3), often called
the ‘upper quartile’, will be (12+[3×15])/4, i.e. 14.25. Therefore the inter-
quartile range is the difference between the third and first quartiles, i.e. 14.25-
7.25=7. As Figure 5.4 indicates, the median is the second quartile, but is not a
component of the calculation of the inter-quartile range. The main advantage of
this measure of dispersion is that it eliminates extreme values, but its chief
limitation is that in ignoring 50 per cent of the values in a distribution, it loses
a lot of information. A compromise is the decile range, which divides a
distribution into ten portions (deciles) and, in a similar manner to the inter-
quartile range, eliminates the highest and lowest portions. In this case, only 20
per cent of the distribution is lost.

By far the most commonly used method of summarizing dispersion is the
standard deviation. In essence, the standard deviation calculates the average
amount of deviation from the mean. Its calculation is somewhat more
complicated than this definition implies. A further description of the standard
deviation can be found in Chapter 7. The standard deviation reflects the degree to

Figure 5.4 The inter-quartile range
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which the values in a distribution differ from the arithmetic mean. The standard
deviation is usually presented in tandem with the mean, since it is difficult to
determine its meaning in the absence of the mean.

We can compare the two distributions in Table 5.5. Although the means are
very similar, the standard deviation for Teacher B’s class (12.37) is much larger
than that for Teacher A (4.91). Thus, the standard deviation permits the direct
comparison of degrees of dispersal for comparable samples and measures. A
further advantage is that it employs all of the values in a distribution. It
summarizes in a single value the amount of dispersion in a distribution, which,
when used in conjunction with the mean, is easy to interpret. The standard
deviation can be affected by extreme values, but since its calculation is affected
by the number of cases, the distortion is less pronounced than with the range.
On the other hand, the possibility of distortion from extreme values must be
borne in mind. None the less, unless there are very good reasons for not wanting
to use the standard deviation, it should be used whenever a measure of
dispersion is required. It is routinely reported in research reports and widely
recognized as the main measure of dispersion.

This consideration of dispersion has tended to emphasize interval variables.
The standard deviation can only be employed in relation to such variables. The
range and inter-quartile range can be used in relation to ordinal variables, but
this does not normally happen, while tests for dispersion in nominal variables
would be inappropriate. Probably the best ways of examining dispersion for
nominal and ordinal variables are through bar charts, pie charts and frequency
tables.

Box 5.8 Explore dialog box
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Measuring central tendency and dispersion with SPSS

All of these statistics can be generated in SPSS. Taking income as an
illustration, the following sequence should be followed:

�Statistics �Summarize �Explore…[opens Explore dialog box
shown in Box 5.8]
�income ��button by Dependent List: [puts income in Dependent
List: box] �OK

The resulting output is in Table 5.6. The following items that have been covered
above will be produced: arithmetic mean, median, range, minimum and
maximum values, standard deviation, and the inter-quartile range.

STEMS AND LEAVES, BOXES AND WHISKERS

In 1977, John Tukey published a highly influential book entitled Exploratory
Data Analysis, which sought to introduce readers to a variety of techniques he

Table 5.6 Explore output for income
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had developed which emphasize simple arithmetic computation and diagram-
matic displays of data. Although the approach he advocates is antithetical to
many of the techniques conventionally employed by data analysts, including the
bulk of techniques examined in this book, some of Tukey’s displays can be
usefully appended to more orthodox procedures. Two diagrammatic
presentations of data are very relevant to the present discussion—the stem and
leaf display and the boxplot (sometimes called the box and whisker plot).

The stem and leaf display

The stem and leaf display is an extremely simple means of presenting data on an
interval variable in a manner similar to a histogram, but without the loss of
information that a histogram necessarily entails. It can be easily constructed by
hand, although this would be more difficult with very large amounts of data. In
order to illustrate the stem and leaf display, data on one indicator of local
authority performance are taken. For a number of years, the British government
has given the Audit Commission the task of collecting data on the performance
of local authorities, so that their performance can be compared. One of the
criteria of performance relates to the percentage of special needs reports issued
within six months. A good deal of variation could be discerned with respect to
this criterion, as the author of an article in The Times noted:

If a child in Sunderland needs a report drawn up on its special educational
needs, it has no chance of receiving this within six months. If the child
moved a mile or two down the road into Durham, there would be an 80 per
cent chance that the report would be issued in that time. (Murray 1995:32)

Whether such data really measure efficiency is, of course, a matter of whether
the measure is valid (see Chapter 4), but there is no doubt that there is a great
deal of variation with respect to the percentage of reports issued within six
months. As Table 5.7 shows, the percentage varies between 0 and 95 per cent.

Figure 5.5 provides a stem and leaf display for this variable which we call
‘needs’. The display has two main components. First, the digits in the middle
column make up the stem. These constitute the starting parts for presenting each
value in a distribution. Each of the digits that form the stem represents age in
tens, i.e. 0 refers to single digit numbers; 1 to tens; 2 to twenties; 3 to thirties; and
so on. To the right of the stem are the leaves, each of which represents an item of
data which is linked to the stem. Thus, the 0 to the right of the 0 refers to the
lowest value in the distribution, namely the percentage figure of 0. We can see
that three authorities failed to issue any reports within six months and four issued
only 1 per cent of reports within six months. When we come to the row starting
with 1, we can see that five managed to issue 10 per cent of reports within six
months. It is important to ensure that all of the leaves—the digits to the right of
the stem—are vertically aligned. It is not necessary for the leaves to be ordered



Summarizing data 89

Table 5.7 Percentage of special needs reports issued within six months in local
authorities in England and Wales, 1993–4

Note: *=missing or doubtful information.
Source: adapted from The Times 30 March 1995, p. 32.
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in magnitude, i.e. from 0 to 9, but it is easier to read. We can see that the distri-
bution is very bunched at the low end of the distribution. The appearance of the
diagram has been controlled by requesting that incremental jumps are in tens,
i.e. first tens, then twenties, then thirties, and so on. The output can also be
controlled by requesting that any outliers are separately positioned. Practitioners
of exploratory data analysis use a specific criterion for the identification of
outliers. Outliers at the low end of the range are identified by the formula:

first quartile—(1.5×the inter-quartile range)

and at the high end of the range by the formula:

third quartile—(1.5×the inter-quartile range).

The first quartile for ‘needs’ is 8.0 and the third quartile is 36.0. Substituting in
these two simple equations means that outliers will need to be below -36.0 or
above 78.0. Using this criterion, four outliers (Extremes) are identified (see
Figure 5.5). To produce a stem and leaf display, we follow almost exactly the
same procedure as we did for producing measures of central tendency and
dispersion (see Box 5.5):
 

�Statistics �Summarize �Explore…[opens Explore dialog box
shown in Box 5.8]
�needs ��button by Dependent List: [puts needs in Dependent List:
box] �Plots in box by Display ?OK

Figure 5.5 Stem and leaf display for Needs
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The output is in Figure 5.5. The figures in the column to the left of the starting
parts represent the frequency for each. We can also see that there are missing
data for two authorities.

The stem and leaf display provides a similar presentation to a histogram, in
that it gives a sense of the shape of the distribution (such as whether values tend
to be bunched at one end), the degree of dispersion, and whether there are
outlying values. However, unlike the histogram it retains all the information, so
that values can be directly examined to see whether particular ones tend to
predominate.

The boxplot

Figure 5.6 provides the skeletal outline of a basic boxplot. The box comprises
the middle 50 per cent of observations. Thus the lower end of the box, in terms
of the measure to which it refers, is the first quartile and the upper end is the
third quartile. In other words, the box comprises the inter-quartile range. The
line in the box is the median. The broken lines (the whiskers) extend down-
wards to the lowest value in the distribution and upwards to the largest value
excluding outliers, i.e. extreme values, which are separately indicated. It has a
number of advantages. Like the stem and leaf display, the boxplot provides
information about the shape and dispersion of a distribution. For example, is the
box closer to one end or is it near the middle? The former would denote that
values tend to bunch at one end. In this case, the bulk of the observations are at
the lower end of the distribution, as is the median. This provides further
information about the shape of the distribution, since it raises the question of
whether the median is closer to one end of the box, as it is in this case. On the

Figure 5.6 Boxplot
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Figure 5.7 Boxplot for Needs (SPSS output)

other hand, the boxplot does not retain information like the stem and leaf
display. Figure 5.7 provides a boxplot of the data from Table 5.6. The four
outliers are signalled, using the previously-discussed criterion. It is clear that in
half the authorities (all those below the line representing the median) 20 per cent
or fewer reports are issued within six months.

When a stem and leaf display is requested as above, a boxplot will also be
produced and will appear in the SPSS Output Viewer. In other words, following
the sequence stipulated on page 90 will generate both a stem and leaf display
and a boxplot.

Both of these exploratory data analysis techniques can be recommended as
providing useful first steps in gaining a feel for data when you first start to
analyze them. Should they be used as alternatives to histograms and other
more common diagrammatic approaches? Here they suffer from the
disadvantage of not being well known. The stem and leaf diagram is probably
the easier of the two to assimilate, since the box and leaf diagram requires an
understanding of quartiles and the median. If used in relation to audiences
who are likely to be unfamiliar with these techniques, they may generate some
discomfort even if a full explanation is provided. On the other hand, for
audiences who are (or should be) familiar with these ideas, they have much to
recommend them.
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THE SHAPE OF A DISTRIBUTION

On a number of occasions, reference has been made to the shape of a dis-
tribution. For example, values in a distribution may tend to cluster at one end of
the distribution or in the middle. In this section, we will be more specific about
the idea of shape and introduce some ideas that are central to some aspects of
data analysis to be encountered in later chapters.

Statisticians recognize a host of different possible distribution curves. By far
the most important is the normal distribution. The normal distribution is a bell-
shaped curve. It can take a number of different forms depending upon the
degree to which the data are dispersed. Two examples of normal distribution
curves are presented in Figure 5.8. The term ‘normal’ is potentially very
misleading, because perfect normal distributions are very rarely found in reality.
However, the values of a variable may approximate to a normal distribution and
when they do, we tend to think of them as having the properties of a normal
distribution. Many of the most common statistical techniques used by social
scientists presume that the variables being analyzed are nearly normally
distributed (see the discussion of parametric and non-parametric tests in
Chapter 7).

The normal distribution should be thought of as subsuming all of the cases
which it describes beneath its curve. Fifty per cent will lie on one side of the
arithmetic mean; the other 50 per cent on the other side (see Figure 5.9). The
median value will be identical to the mean. As the curve implies, most values
will be close to the mean. This is why the curve peaks at the mean. But the
tapering off at either side indicates that as we move in either direction away
from the mean, fewer and fewer cases are found. Only a small proportion will
be found at its outer reaches. People’s heights illustrate this fairly well. The
mean height for an adult woman in the UK is 5ft 3in (160.9 cm). If women’s
heights are normally distributed, we would expect that most women would
cluster around this mean. Very few will be very short or very tall. We know that

Figure 5.8 Two normal distributions
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Figure 5.9 The normal distribution and the mean

women’s heights have these properties, though whether they are perfectly
normally distributed is another matter.

 
Figure 5.10 Properties of the normal distribution

The normal distribution displays some interesting properties that have been
determined by statisticians. These properties are illustrated in Figure 5.10. In a
perfectly normal distribution:
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• 68.26 per cent of cases will be within one standard deviation of the mean;
• 95.44 per cent of cases will be within two standard deviations of the mean;
• 99.7 per cent of cases will be within three standard deviations of the mean.

Thus, if we have a variable which is very close to being normally distributed, we
can say that if the mean is 20 and the standard deviation is 1.5, 95.44 per cent
of cases will lie between 17 and 23 (i.e. 20±2×1.5). Turning this point around
slightly, we can assert that there is a 95.44 per cent probability that a case will
lie between 17 and 23. Likewise, 99.7 per cent of cases will lie between 15.5
and 24.5 (i.e. 20±3×1.5). Thus, we can be 99.7 per cent certain that the value
relating to a particular case will lie between 15.5 and 24.5.

The data in Table 5.5 can be used to illustrate these ideas further. Ignoring the
fact that we have all of the mathematics scores for the students of these two
teachers for a moment, if we know the mean and standard deviation for each of
the two distributions, assuming normality we can work out the likelihood of
cases falling within particular regions of the mean. With Teacher A’s students,
68.26 per cent of cases will fall within ±4.91 (the standard deviation) of 65.55
(the mean). In other words, we can be 68.26 per cent certain that a student will
have gained a mark of between 60.64 and 70.46. The range of probable marks
for Teacher B’s students is much wider, mainly because the standard deviation
of 12.37 is much larger. For Teacher B’s class, there is a 68 per cent probability
of gaining a mark of between 50.83 and 75.77. Table 5.8 presents the ranges of
marks for one, two and three standard deviations from the mean for each teacher.
The larger standard deviation for Teacher B’s class means that for each standard
deviation from the mean we must tolerate a wider range of probable marks.

It should be noted that as we try to attain greater certainty about the likely
value of a particular case, the range of possible error increases from 1×the
standard deviation to 3×the standard deviation. For Teacher A, we can be 68.26
per cent certain that a score will lie between 70.46 and 60.64; but if we aimed
for 99.7 per cent certainty, we must accept a wider band of possible scores, i.e.
between 80.28 and 50.82. As we shall see in the context of the discussion of
statistical significance in Chapter 6, these properties of the normal distribution
are extremely useful and important when the researcher wants to make
inferences about populations from data relating to samples.

Table 5.8 Probable mathematics marks (from data in Table 5.5)
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Figure 5.11 Positively and negatively skewed distributions

It is important to realize that some variables will not follow the shape of the
normal distribution curve. In some cases, they may depart very strikingly from
it. This tendency is most clearly evident when the values in a distribution are
skewed—that is, they tend to cluster at either end. When this occurs, the mean
and median no longer coincide. These ideas are illustrated in Figure 5.11. The
left-hand diagram shows a curve that is positively skewed in that cases tend to
cluster to the left and there is a long ‘tail’ to the right. The variable ‘needs’ is an
illustration of a positively skewed distribution, as the boxplot in Figure 5.7
suggests (the mean is 24.75 and the median is 20.00). In the right-hand diagram,
the curve is negatively skewed. Another kind of distribution is one which
possesses more than one peak.

Although there is a recognition that some variables in the social sciences do
not exhibit the characteristics of a normal curve and that therefore we often have
to treat variables as though they were normally distributed, when there is a very
marked discrepancy from a normal distribution, such as in the two cases in
Figure 5.10, some caution is required. For example, many writers would argue
that it would not be appropriate to apply certain kinds of statistical test to
variables which are profoundly skewed when that test presumes normally
distributed data. Very often, skewness or other pronounced departures from a
normal distribution can be established from the examination of a frequency
table or of a histogram. SPSS provides a measure of skewness, which can be
generated through the following sequence (using income as an illustration):
 

�Statistics �Summarize �Frequencies…[opens Frequencies dialog
box shown in Box 5.3]
�income ��button �Statistics [opens Frequencies: Statistics sub-
dialog box shown in Box 5.9]
�Skewness in Distribution box �Continue [closes Frequencies:
Statistics subdialog box]
�OK
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Box 5.9 Frequencies: Statistics subdialog box

If there is no skew, or in other words if the variable is normally distributed,
a value of zero or nearly zero will be registered. If there is a negative value, the
data are negatively skewed; if the value is positive, the data are positively
skewed. On the other hand, this test is not easy to interpret and there is much to
be said for a visual interpretation of the data to discern excessive skew. This can
be done through a frequency table, or through a diagrammatic presentation such
as a histogram or a stem and leaf display.

EXERCISES

 
1. What is the appropriate SPSS procedure for producing a frequency table for

prody (Job-Survey data), along with percentages and median?

2. Implement the procedure from Question 1. What is the percentage of
respondents in the ‘poor’ category?

3. What problem would you anticipate if you used the mean and the range as
measures of central tendency and dispersion respectively for the variable ‘size
of firm’ in Table 8.11?

4. Which of the following should not be used to represent an interval variable:
(a) a boxplot; (b) a stem and leaf display; (c) a bar chart; or (d) a histogram?
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5. What is the appropriate SPSS procedure for calculating the inter-quartile
range for income (Job-Survey data)?

6. What is the inter-quartile range for satis?

7. Why might the standard deviation be a superior measure of dispersion to the
inter-quartile range?

8. Taking satis again, what is the likely range of satis scores that lie within two
standard deviations of the mean? What percentage of cases are likely to lie
within this range?

 
 



Chapter 6

Sampling and statistical

significance

In this chapter, we will be encountering some issues that are fundamental to an
appreciation of how people (or whatever is the unit of analysis) should be
selected for inclusion in a study and of how it is possible to generalize to the
population from which people are selected. These two related issues are
concerned with sampling and the statistical significance of results. In examining
sampling we will be examining the procedures for selecting people so that they
are representative of the population from which they are selected. The topic of
statistical significance raises the issue of how confident we can be that findings
relating to a sample of individuals will also be found in the population from
which the sample was selected.

SAMPLING

The issue of sampling is important because it is rarely the case that we have
sufficient time and resources to conduct research on all of those individuals who
could potentially be included in a study. Two points of clarification are relevant
at this early stage. We talk about sampling from a population in the introduction
to this chapter. It should be recognized that when we sample, it is not
necessarily people who are being sampled. We can just as legitimately sample
other units of analysis such as organizations, schools, local authorities, and so
on. Second, by a ‘population’ is meant a discrete group of units of analysis and
not just populations in the conventional sense, such as the population of
England and Wales. Populations can be populations of towns, of particular
groups (e.g. all accountants in the UK), of individuals in a firm, or of firms
themselves. When we sample, we are selecting units of analysis from a clearly
defined population.

Clearly, some populations can be very large and it is unlikely that all of the
units in a population can be included because of the considerable time and cost
that such an exercise would entail. Sometimes, they can be sufficiently small for
all units to be contacted; or if they are not too large, it may be possible to carry
out postal questionnaire or telephone interview surveys on a whole population.
On the other hand, researchers are very often faced with the need to sample. By
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and large, researchers will want to form a representative sample—that is, a
sample that can be treated as though it were the population. It is rare that
perfectly representative samples can be created, but the chances of forming a
representative sample can be considerably enhanced by probability sampling.
The distinction between probability and non-probability sampling is a basic
distinction in discussions of sampling. With probability sampling, each unit of
a population has a specifiable probability of inclusion in a sample. In the basic
forms of probability sampling, such as simple random samples (see below),
each unit will have an equal probability of inclusion.

As an example of a non-probability sampling procedure, consider the
following scenario. An interviewer is asked to obtain answers to interview
questions for fifty people—twenty-five of each gender. She positions herself in a
shopping area in a town at 9.00 a.m. on a Monday and starts interviewing people
one by one. Will a representative sample be acquired? While it is not impossible
that the sample is representative, there are too many doubts about its
representativeness. For example, most people who work will not be shopping, she
may have chosen people to be interviewed who were well-dressed, and some
people may be more likely to use the shops by which she positions herself than
others. In other words, there is a strong chance that the sample is not
representative of the people of the town. If the sample is unrepresentative, then
our ability to generalize our findings to the population from which it was selected
is sharply curtailed. If we do generalize, our inferences may be incorrect. If the
sample is heavily biased towards people who do not work, who appeal to the
interviewer because of their appearance and who only shop in certain retail
outlets, it is likely to be a poor representation of the wider population.

By contrast, probability sampling permits the selection of a sample that
should be representative. The following is a discussion of the main types of
probability sample that are likely to be encountered.

Simple random sample

The simple random sample is the most basic type of probability sample. Each
unit in the population has an equal probability of inclusion in the sample. Like
all forms of probability sample, it requires a sampling frame, which provides a
complete listing of all the units in a population. Let us say that we want a
representative sample of 200 non-manual employees from a firm which has 600
non-manual employees. The sample is often denoted as n and the population as
N. A sampling frame is constructed which lists the 600 non-manual employees.
Each employee is allocated a number between 1 and N (i.e. 600). Each employee
has a probability of n/N of being included in the sample, i.e. 1 in 3. Individuals
will be selected for inclusion on a random basis to ensure that human choice is
eliminated from decisions about who should be included and who excluded.

Each individual in the sampling frame is allocated a number 1 to N. The idea
is to select n from this list. To ensure that the process is random, a table of
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random numbers should be consulted. These tables are usually in columns of
five-digit numbers. For example, the figures might be
 
26938
37025
00352
 
Since we need to select a number of individuals which is in three digits (i.e.
200), only three digits in each five-digit random number should be considered.
Let us say that we take the last three digits in each random number, that is we
exclude the first two from consideration. The first case for inclusion would be
that numbered 938. However, since the population is only 600, we cannot have
a case numbered 938, so this figure is ignored and we proceed to the next
random number. The figure 37025 implies that the case numbered 025 will be
the first case for inclusion. The person numbered 025 will be the first sampled
case. The next will be the person numbered 352, and so on. The process
continues until n (i.e. 200) units have been selected.

By relying on a random process for the selection of individuals, the possibility
of bias in the selection procedure is largely eliminated and the chances of
generating a representative sample are enhanced. Sometimes, a systematic
sample is selected rather than a simple random sample. With a systematic
sample, the selection of individuals is undertaken directly from the sampling
frame and without the need to connect random numbers and cases. In the
previous example, a random start between 1 and 3 would be made. Let us say that
the number is 1. The first case on the sampling frame would be included. Then,
every third case would be selected, since 1 in 3 must be sampled. Thus, the
fourth, seventh, tenth, thirteenth, and so on would be selected. The chief
advantage of the systematic sample over the simple random sample is that it
obviates the need to plough through a table of random numbers and to tie in each
number with a corresponding case. This procedure can be particularly time-
consuming when a large sample must be selected. However, in order to select a
systematic sample, the researcher must ensure that there is no inherent ordering
to the list of cases in the sampling frame, since this would distort the ensuing
sample and would probably mean that it was not representative.

Stratified sampling

Stratified sampling is commonly used by social scientists because it can lend an
extra ingredient of precision to a simple random or systematic sample. When
selecting a stratified sample, the researcher divides the population into strata.
The strata must be categories of a criterion. For example, the population may be
stratified according to the criterion of gender, in which case two strata—male
and female—will be generated. Alternatively, the criterion may be department
in the firm, resulting in possibly five strata: production, marketing, personnel,
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accounting, and research and development. Provided that the information is
readily available, people are grouped into the strata. A simple random or
systematic sample is then taken from the listing in each stratum. It is important
for the stratifying criterion to be relevant to the issues in which the researcher is
interested; it should not be undertaken for its own sake. The researcher may be
interested in how the attitudes of non-manual employees are affected by the
department to which they are attached in the firm. The advantage of stratified
sampling is that it offers the possibility of greater accuracy, by ensuring that the
groups that are created by a stratifying criterion are represented in the same
proportions as in the population.

Table 6.1 provides an illustration of the idea of a stratified sample. The table
provides the numbers of non-manual personnel in each department in the first
column and the number from each department (i.e. stratum) that would be
selected on a 1 in 3 basis. The important point to note is that the proportions of
personnel from each department in the sample are the same as in the population.
The largest department—production—has 35 per cent of all non-manual
employees in the firm and 35 per cent of non-manual employees in the sample.
A simple random or systematic sample without stratification might have
achieved the same result, but a stratified sample greatly enhances the likelihood
of the proper representation of strata in the sample. Two or more stratifying
criteria can be employed in tandem. For example, if the researcher were
interested in the effects of gender on job attitudes, as well as belonging to
different departments, we would then have ten strata (five departments× two
sexes), that is, men and women in production, men and women in marketing,
and so on. A 1 in 3 sample would then be taken from each of the ten strata.

If the numbers in some strata are likely to be small, it may be necessary to
sample disproportionately. For example, we may sample 2 in 3 of those in
research and development. This would mean that 30, rather than 15, would be
sampled from this department. However, to compensate for the extra 15
individuals that are sampled in research and development, slightly fewer than 1
in 3 for production and accounting may need to be sampled. When this occurs,

Table 6.1 Devising a stratified random sample: non-
manual employees in a firm
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it has to be recognized that the sample is differentially weighted relative to the
population, so that estimates of the sample mean will have to be corrected to
reflect this weighting.

Multistage cluster sampling

One disadvantage of the probability samples covered so far is that they do not
deal very well with geographically dispersed populations. If we took a simple
random sample of all chartered accountants in the UK or indeed of the
population of the UK itself, the resulting sample would be highly scattered. If
the aim was to conduct an interview survey, interviewers would spend a great
deal of time and money travelling to their respondents. A multistage cluster
sample is a probability sampling procedure that allows such geographically
dispersed populations to be adequately covered, while simultaneously saving
interviewer time and travel costs.

Initially, the researcher samples clusters—that is, areas of the geographical
region being covered. The case of seeking to sample households in a very large
city can be taken as an example of the procedure. At the first stage, all of the
electoral wards in the city would be ascribed a number 1 to N and a simple
random sample of wards selected. At the second stage, a simple random sample
of streets in each ward might be taken. At the third stage, a simple random
sample of households in the sampled streets would be selected from the list of
addresses in the electoral rolls for the relevant wards. By concentrating
interviewers in small regions of the city, much time and travel costs can be
saved. Very often, stratification accompanies the sampling of clusters. For
example, wards might be categorized in terms of an indicator of economic
prosperity (e.g. high, medium and low), such as the percentage of heads of
household in professional and managerial jobs. Stratification will ensure that
clusters are properly represented in terms of this criterion.

SAMPLING PROBLEMS

One of the most frequently asked questions in the context of sampling is ‘How
large should a sample be?’ In reality, there can be only a few guidelines to
answering this question, rather than a single definitive response.

First, the researcher almost always works within time and resource
constraints, so that decisions about sample size must always recognize these
boundaries. There is no point in working out an ideal sample size for a project
if you have nowhere near the amount of resources required to bring it into
effect. Second, the larger the sample, the greater the accuracy. Contrary to
expectations, the size of the sample relative to the size of the population (in
other words n/N) is rarely relevant to the issue of a sample’s accuracy. This
means that sampling error—differences between the sample and the population
that are due to sampling—can be reduced by increasing sample size. However,
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after a certain level, increases in accuracy tend to tail off as sample size
increases, so that greater accuracy becomes economically unacceptable.

Third, the problem of non-response should be borne in mind. Most sample
surveys attract a certain amount of non-response. Thus, it is likely that only
some of the 200 non-manual employees we sample will agree to participate in
the research. If it is our aim to ensure as far as possible that 200 employees are
interviewed, and if we think that there may be a 20 per cent rate of non-
response, it may be advisable to select 250 individuals, on the grounds that
approximately 50 will be non-respondents. Finally, the researcher should bear
in mind the kind of analysis he or she intends to undertake. For example, if the
researcher intends to examine the relationship between department in the firm
and attitudes to white-collar unions, a table in which department is cross-
tabulated against attitude can be envisaged. If ‘attitude to white-collar unions’
comprises four answers, and since ‘department’ comprises five categories, a
table of twenty ‘cells’ would be engendered (see discussion of contingency
tables and crosstabulation in Chapter 8). In order for there to be an adequate
number of cases in each cell a fairly large sample will be required.
Consequently, considerations of sample size should be sensitive to the kinds of
analysis that will subsequently be required.

The issue of non-response draws attention to the fact that a well-crafted
sample can be jeopardized by the failure of individuals to participate. The
problem is that respondents and non-respondents may differ from each other in
certain respects, so that respondents may not be representative of the population.
Sometimes, researchers try to discern whether respondents are
disproportionately drawn from particular groups, such as whether men are
clearly more inclined not to participate than women. However, such tests can
only be conducted in relation to fairly superficial characteristics like gender;
deeper differences, such as attitudinal ones, cannot readily be tested. In addition,
some members of a sample may not be contactable, because they have moved or
are on holiday. Moreover, even when a questionnaire is answered, there may still
be questions which, by design or error, are not answered. Each of these three
elements—non-response, inability to contact and missing information for
certain variables—may be a source of bias, since we do not know how
representative those who do respond to each variable are of the population.

Finally, although social scientists are well aware of the advantages of
probability sampling procedures, a great deal of research does not derive from
probability samples. In a review of 126 articles in the field of organization
studies which were based on correlational research, Mitchell (1985) found that
only twenty-one were based on probability samples. The rest used convenience
samples, that is, samples which are either ‘chosen’ by the investigator or which
choose themselves (e.g. volunteers). However, when it is borne in mind that
response rates to sample surveys are often quite low and are declining (Goyder
1988), the difference between research based on random samples and
convenience samples in terms of their relative representativeness is not always
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as great as is sometimes implied. None the less, many of the statistical tests and
procedures to be encountered later in this book assume that the data derive from
a random sample. The point being made here is that this requirement is often not
fulfilled and that even when a random sample has been used, factors like non-
response may adversely affect the representativeness of a sample.

STATISTICAL SIGNIFICANCE

How do we know if a sample is typical or representative of the population from
which it has been drawn? To find this out we need to be able to describe the
nature of the sample and the population. This is done in terms of the
distributions of their values. Thus, for example, if we wanted to find out whether
the proportion of men to women in our sample was similar to that in some
specified population, we would compare the two proportions. The main tests for
tackling such problems are described in Chapters 7 and 9. It should be noted
that the same principle lies behind all statistical tests, including those concerned
with describing the relationship between two or more variables. Here, the basic
idea underlying them will be outlined.

To do this we will take the simple case of wanting to discover whether a coin
was unbiased in the sense that it lands heads and tails an equal number of
times. The number of times we tossed the coin would constitute the sample,
while the population would be the outcomes we would theoretically expect if
the coin was unbiased. If we flipped the coin just once, then the probability of
it turning up heads is once every two throws or 0.5. In other words, we would
have to toss it at least twice to determine if both possibilities occur. If we were
to do this, however, there would be four possible theoretical outcomes as
shown in Table 6.2: (1) a head followed by a tail; (2) a tail followed by a head;
(3) two heads; and (4) two tails. What happens on each throw is independent
of, or not affected, by the outcome of any other throw. If the coin was unbiased,
then each of the four outcomes would be equally probable. In other words, the
probability of obtaining either two tails or two heads (but not both possibilities)
is one in four, or 0.25, while that of obtaining a head and a tail is two in four,
or 0.5. The probability of obtaining a head and a tail (0.5) is greater than that
of two tails (0.25) or two heads (0.25) but is the same as that for two tails and
two heads combined (0.25+0.25). From this it should be clear that it is not
possible to draw conclusions about a coin being unbiased from so few throws

Table 6.2 Four possible outcomes of
tossing a coin twice
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or such a small sample. This is because the frequency of improbable events is
much greater with smaller samples. Consequently, it is much more difficult with
such samples to determine whether they come from a certain population.

If we plot or draw the distribution of the probability of obtaining the same
proportion of heads to tails, as shown in Figure 6.1, then it will take the shape
of an inverted ‘V’. This shape will contain all the possible outcomes which will
add up to 1 (0.25+0.25+0.25+0.25=1).

Theoretically, the more often we throw the coin, the more similar the
distribution of the possible outcomes will be to an inverted ‘U’ or normal
distribution. Suppose, for example, we threw the same coin six times (or, what
amounts to the same thing, six coins once). If we did this, there would be sixty-
four possible outcomes. These are shown in Table 6.3. The total number of
outcomes can be calculated by multiplying the number of possible outcomes on
each occasion (2) by those of the other occasions (2×2×2×2×2×2= 64). The
probability of obtaining six heads or six tails in a row (but not both) would be
one in sixty-four or about 0.016. Since there are six possible ways in which one
head and five tails can be had, the probability of achieving this is six out of
sixty-four or about 0.10 (i.e., 0.016×6). The distribution of the probability of
obtaining different sequences of the same number of tails and heads grouped
together (for example the six sequences of finding five tails and a head) is
presented in Figure 6.2.

It should be clear from this discussion that we can never be 100 per cent
certain that the coin is unbiased, because even if we threw it 1,000 times, there
is a very small chance that it will turn up all heads or all tails on every one of
those throws. So what we do is to set a criterion or cut-off point at or beyond
which we assume the coin will be judged to be biased. This point is arbitrary
and is referred to as the significance level. It is usually set at a probability or p

Figure 6.1 The distribution of similar theoretical outcomes of tossing a coin twice
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level of 0.05 or five times out of a hundred. Since the coin can be biased in one
of two ways, i.e. in favour of either heads or tails, this 5 per cent is shared
equally between these two possibilities. This means, in effect, that the
probability of the coin being biased towards heads will be 0.025 and that the
probability of its bias towards tails will also be 0.025. In other words, if it turns
up heads or tails six times in a row, then the probability of both these outcomes
occurring would be about 0.032 (i.e. 0.016+0.016) which is below the prob-
ability of 0.05. If either of these two events happened we would accept that the

Table 6.3 Theoretical outcomes of tossing a coin six times and the probabilities of
similar outcomes
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Figure 6.2 The distribution of similar theoretical outcomes of tossing a coin six
times

coin was biased. If, however, it landed tails once and heads five times, or heads
once and tails five times, there are six ways in which either of these two
outcomes could happen. Consequently, the probability of either one happening is
six out of sixty-four or about 0.10. The probability of both outcomes occurring
is about 0.2 (i.e. 0.10+0.10). In this case, we would have to accept that the coin
was unbiased since this probability level is above the criterion of 0.05.

Because we can never be 100 per cent certain that the coin is either biased or
unbiased, we can make one of two kinds of error. The first kind is to decide that
the coin is biased when it is not. This is known as a Type I error and is
sometimes referred to as a (alpha). For example, as we have seen, an unbiased
coin may land heads six times in a row. The second kind of error is to judge the
coin to be unbiased when it is biased. This is called a Type II error and is
represented by ß (beta). It is possible, for instance, for a biased coin to come up
tails once and heads five times. We can reduce the possibility of making a Type
I error by accepting a lower level of significance, say 0.01 instead of 0.05. But
doing this increases the probability of making a Type II error. In other words,
the probability of a Type I error is inversely related to that of a Type II one. The
more likely we are to make a Type I error, the less likely we are to commit a
Type II error.

At this stage, it is useful to discuss briefly three kinds of probability
distribution. The first is known as a binomial distribution and is based on the
idea that if only either of two outcomes can occur on any one occasion (for
example heads or tails if a coin is thrown), then we can work out the theoretical
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distribution of the different combinations of outcomes which could occur if we
knew the number of occasions that had taken place. One characteristic of this
distribution is that it consists of a limited or finite number of events. If, however,
we threw an infinite number of coins an infinite number of times, then we would
have a distribution which would consist of an infinite possibility of events. This
distribution is known variously as a DeMoivre’s, Gaussian, standard normal or
z curve distribution. If random samples of these probabilities are taken and
plotted, then the shape of those distributions will depend on the size of the
samples. Smaller samples will produce flatter distributions with thicker tails
than the normal distribution, while larger ones will be very similar to it. These
distributions are known as t distributions. What this means is that when we want
to know the likelihood that a particular series of events could have occurred by
chance, we need to take into account the size of the sample on which those
events are based.

So far, in order to convey the idea that certain events may occur just by
chance, we have used the example of tossing a coin. Although this may seem a
bit remote from the kinds of data we collect in the social sciences, we use this
underlying principle to determine issues such as whether a sample is
representative of its population and whether two or more samples or treatments
differ from each other. Suppose we drew a small sample of six people and
wanted to determine if the proportion of males to females in it was similar to
that of the population in which the number of men and women are equal. Each
person can only be male or female. Since there are six people, there are sixty-
four possible outcomes (i.e. 2×2×2×2×2×2). These, of course, are the same as
those displayed in Table 6.3 except that we now substitute males for tails and
females for heads. The joint probability of all six people being either male or
female would be about 0.03 (i.e. 0.016+0.016), so that if this were the result we
would reject the notion that the sample was representative of the population.
However, if one was male and the other five female, or there was one female and
five males, then the probability of this occurring by chance would be about 0.2
(i.e. 0.096+0.096). This would mean that at the 0.05 significance level we would
accept either of these two outcomes or samples as being typical of the
population because the probability of obtaining these outcomes is greater than
the 0.05 level. This shows that sample values can diverge quite widely from
those of their populations and still be drawn from them, although it should be
emphasized that this outcome would be less frequent the larger the sample.
Statistical tests which compare a sample with a population are known as one-
sample tests and can be found in the next chapter.

The same principle underlies tests which have been developed to find out if
two or more samples or treatments come from the same population or different
ones, although this is a little more difficult to grasp. For example, we may be
interested in finding out whether women are more perceptive than men, or
whether alcohol impairs performance. In the first case, the two samples are
women and men while in the second they are alcohol and no alcohol. Once
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again, in order to explain the idea that underlies these tests, it may be useful to
think about it initially in terms of throwing a coin, except that this time we
throw two coins. The two coins represent the two samples. We want to know
whether the two coins differ in their tendency to be unbiased. If the two coins
were unbiased and if we were to throw them six times each, then we should
expect the two sets of theoretical outcomes obtained to be the same as that in
Table 6.3. In other words, the two distributions should overlap each other
exactly.

Now if we threw the two coins six times each, it is unlikely that the
empirical outcomes will be precisely the same, even if the coins were
unbiased. In fact, we can work out the theoretical probability of the two
distributions being different in the same way as we did earlier for the coin
turning up heads or tails. It may be easier in the first instance if we begin by
comparing the outcomes of tossing two coins just once. If we do this, there are
four possible outcomes: (1) two tails; (2) two heads; (3) one tail and one head;
and (4) one head and one tail. If we look at these outcomes in terms of
whether they are the same or different, then two of them are the same (two
tails and two heads) while two of them are different (one tail and one head,
and vice versa). In other words, the probability of finding a difference is two
out of four, or 0.5, which is the same as that for discovering no difference. We
stand an equal chance of finding no difference as we do of a difference if we
throw two unbiased coins once.

Thinking solely in terms of the outcomes of the two coins being the same
or different, if we threw the two coins twice, then there would be four possible
outcomes: (1) two the same; (2) two different; (3) the first the same and the
second different; and (4) the first different and the second the same. In other
words, the probability of obtaining the same outcome when two unbiased
coins are thrown twice is 0.25. The probability of the outcomes being mixed
is greater with the value being 0.5. The probability of the outcomes being the
same on all six throws would be about 0.016 (0.5×0.5×0.5×0.5×0.5×0.5=
0.016). Hence, if the two coins were unbiased, we would not expect them to
give the same outcome on each occasion they were tossed. The distribution of
the outcomes of the two coins represents, in effect, what we would expect to
happen if the differences between two samples or two treatments were due to
chance.

Applying this idea to the kind of question that may be asked in the social
sciences, we may wish to find out if women and men differ in their
perceptiveness. There are three possible answers to this question: (1) women
may be more perceptive than men; (2) they may be no different from them; or
(3) they may be less perceptive than them. In other words, we can have three
different expectations or hypotheses about what the answer might be. Not
expecting any difference is known as the null hypothesis. Anticipating a
difference but not being able to predict what it is likely to be is called a non-
directional hypothesis. However, it is unlikely that we would ask this sort of
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question if we did not expect a difference of a particular nature, since there are
an infinite number of such questions which can be posed. In carrying out
research, we are often concerned with showing that a particular relationship
either holds or does not hold between two or more variables. In other words, we
are examining the direction as well as the existence of a relationship. In this
case, we may be testing the idea that women are more perceptive than men. This
would be an example of a directional hypothesis. As we shall see, specifying the
direction of the hypothesis means that we can adopt a slightly higher and more
lenient level of significance.

Since there are three possible outcomes (i.e. a probability of 0.33 for any one
outcome) for each paired comparison, if we tested this hypothesis on a small
sample of five men and five women, then the probability of all five women
being more perceptive than men just by chance would be about 0.004 (i.e. 0.33×
0.33×0.33×0.33×0.33). If we obtained this result, and if we adopted the usual
0.05 or 5 per cent as the significance level at or below which this finding is
unlikely to be due to chance, then we would accept the hypothesis since 0.004
is less than 0.05. In other words, we would state that women were significantly
more perceptive than men below the 5 per cent level—see Figure 6.3(a). As we
shall see, SPSS usually provides the exact level of significance for each test. It
has been customary in the social sciences to provide the significance level only
for results which fall at or below the 0.05 level, and to do so for certain cut-off
points below that such as 0.01, 0.001, and 0.0001. However, with the advent of
computer programs such as SPSS which give exact significance levels, it could
be argued that this tradition does not maximize the information that could be
supplied without any obvious disadvantages.

If, however, we found that only four of the women were more perceptive than
the men, then the probability of this happening by chance would be about 0.04,
since there are ten ways or sequences in which this result could occur
(0.004×10=0.04). This finding is still significant. However, if we had adopted a
non-directional hypothesis and had simply expected a difference between men
and women without specifying its direction, then this result would not be
significant at the 0.05 level since this 0.05 would have to be shared between
both tails of the distribution of possible outcomes as in Figure 6.3(b). In other
words, it would become 0.025 at either end of the distribution. This result would
require a probability level of 0.025 or less to be significant when stated as a non-
directional hypothesis. As it is, the probability of either four women being more
perceptive than men or four men being more perceptive than women is the sum
of these two probabilities, namely 0.08, which is above the 0.05 level. The
important point to note is that nondirectional hypotheses require two-tailed
significance levels while directional hypotheses only need one-tailed ones. If
we find a difference between two samples or treatments we did not expect, then
to test the significance of this result we need to use a two-tailed test.

It may be worth reiterating at this stage that a finding that four out of the five
women being more perceptive than the five men may still be obtained by
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chance even at the 0.04 one-tailed level. In other words, this means that there
remains a four in a hundred possibility that this result could be due to chance.
In accepting this level of significance for rejecting the null hypothesis that there
is no difference between men and women, we may be committing a Type I
error, namely, thinking that there is a difference between them when in fact
there is no such difference. In other words, a Type I error is rejecting the null
hypothesis when it is true, as shown in Table 6.4. We may reduce the proba-
bility of making this kind of error by lowering the significance level from 0.05
to 0.01, but this increases the probability of committing a Type II error, which

 
Table 6.4 Type I and Type II errors

Figure 6.3 One-tailed and two-tailed 0.05 levels of significance
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is accepting that there is no difference when there is one. A Type II error is
accepting the null hypothesis when it is false. Setting the significance level at
0.01 means that the finding that four out of the five women were more
perceptive than the men is assuming that this result is due to chance when it may
be indicating a real difference.

The probability of correctly assuming that there is a difference when there
actually is one is known as the power of a test. A powerful test is one that is
more likely to indicate a significant difference when such a difference exists.
Statistical power is inversely related to the probability of making a Type II error
and is calculated by subtracting beta from one (i.e. 1-ß).

Finally, it is important to realize that the level of significance has nothing to
do with the size or importance of a difference. It is simply concerned with the
probability of that difference arising by chance. In other words, a difference
between two samples or two treatments which is significant at the 0.05 level is
not necessarily bigger than one which is significant at the 0.0001 level. The
latter difference is only less probable than the former one.

EXERCISES

 
1. What is the difference between a random sample and a representative

sample?

2. Why might a stratified sample be superior to a simple random sample?

3. In what context might multistage cluster sampling be particularly useful?

4. If a sample of grocery shops were selected randomly from the Yellow Pages
in your town, would you necessarily have a representative sample?

5. Flip a coin four times. What is the probability of finding the particular
sequence of outcomes you did?

6. If the coin were unbiased, would you obtain two heads and two tails if you
threw it four times?

7. What is the probability of obtaining any sequence of two heads and two
tails?

8. You have developed a test of general knowledge, which consists of a
hundred statements, half of which are false and half of which are true.
Each person is given one point for a correct answer. How many points is
someone who has no general knowledge most likely to achieve on this
test?

9. Fifty people are tested to see if they can tell margarine from butter. Half of
them are given butter and the other half are given margarine. They have to
say which of these two products they were given (i.e. there are no ‘don’t
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knows’). If people cannot discriminate between them, how many people on
average are likely to guess correctly?

10. If we wanted to see if women were more talkative than men, what would the
null hypothesis be?

11. What would the non-directional hypothesis be?

 
 



Chapter 7

Bivariate analysis
Exploring differences between
scores on two variables

In this chapter we will be looking at ways of determining whether the
differences between the distributions of two variables are statistically
significant. Thus, for example, when analyzing data we may wish to know the
answers to some of the following kinds of questions: Is the proportion of black
to white workers the same among men as it is among women? Do women
workers earn less than their male counterparts? Does job satisfaction change
from one month to the next? Do the scores in one treatment group differ from
those in another?

In looking at differences between two variables, the variable which we use to
form our comparison groups usually has a small number of values or levels, say
between two and six. We shall call this the comparison-group variable to
distinguish it from the other one which we shall refer to as the criterion variable.
The comparison variable is sometimes known as the independent variable, and
the criterion variable as the dependent one. An example of a comparison-group
variable would be gender if we wanted to compare men with women. This
typically has two levels (i.e. men and women) which go to make up two
comparison groups. Race or ethnic origin, on the other hand, may take on two
or more levels (e.g. Caucasian, Negroid, Asian, and Mongolian), thereby
creating two or more comparison groups. Other examples of comparison-group
variables include different experimental treatments (for example drugs versus
psychotherapy in treating depression), different points in time (for example two
consecutive months), and the categorization of participants into various levels
on some variable (such as high, intermediate, and low job satisfaction). The
other variable is the one that we shall use to make our comparison (for example
income or job satisfaction).

CRITERIA FOR SELECTING BIVARIATE TESTS OF
DIFFERENCES

There are a relatively large number of statistical tests to determine whether a
difference between two or more groups is significant. In deciding which is the
most appropriate statistical test to use to analyze your data, it is necessary to
bear the following considerations in mind.

115
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Categorical data

If the data are of a categorical or nominal nature, where the values refer to the
number or frequency of cases that fall within particular categories, such as the
number of black female workers, it is only possible to use what is referred to as
a non-parametric test (see below for an explanation). Thus, for example, in
trying to determine whether there are significantly more white than black
female employees, it would be necessary to use a non-parametric test.

Ordinal and interval/ratio data

If the data are of a non-categorical nature, such as the rating of how skilled
workers are or how much they earn, then it is necessary to decide whether it is
more appropriate to use a parametric or non-parametric test. Since this issue is
a complex and controversial one, it will be discussed later in some detail.

Means or variances?

Most investigators who use parametric tests are primarily interested in checking
for differences between means. Differences in variances are also normally
carried out but only to determine the appropriateness of using such a test to
check for differences in the means. Variance is an expression showing the
spread or dispersion of data around the mean and is the square of the standard
deviation. If the variances are found to differ markedly, then it may be more
appropriate to use a non-parametric test. However, differences in variance (i.e.
variability) may be of interest in their own right, and so these tests have been
listed separately. Thus, for example, it may be reasonable to suppose that the
variability of job satisfaction of women will be greater than that of men, but that
there will be no difference in their mean scores. In this case, it would also be
necessary to pay attention to the differences between the variances to determine
if this is so.

Related or unrelated comparison groups?

Which test you use also depends on whether the values that you want to
compare come from different cases or from the same or similar ones. If, for
example, you are comparing different groups of people such as men and women
or people who have been assigned to different experimental treatments, then
you are dealing with unrelated samples of participants. It is worth noting that
this kind of situation or design is also referred to in some of the following other
ways: independent or uncorrelated groups or samples; and between-subjects
design. If, on the other hand, you are comparing the way that the same people
have responded on separate occasions or under different conditions, then you
are dealing with related samples of observations. This is also true of groups of
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people who are or have been matched or paired on one or more important
characteristics such as, for example, husbands and wives, which may also make
them more similar in terms of the criterion variable under study. Once again,
there are a number of other terms used to describe related scores such as the
following: dependent or correlated groups or samples; repeated measures; and
within-subjects design.

Two or more comparison groups?

Different tests are generally used to compare two rather than three or more
comparison groups.

The tests to be used given these criteria are listed in Table 7.1. Readers may
wish to use this table as a guide to the selection of tests appropriate to their
needs. Page numbers are inserted in the table cells to facilitate finding the
appropriate tests.

PARAMETRIC VERSUS NON-PARAMETRIC TESTS

One of the unresolved issues in data analysis is the question of when parametric
rather than non-parametric tests should be used. Some writers have argued that
it is only appropriate to use parametric tests when the data fulfil the following
three conditions: (1) the level or scale of measurement is of equal interval or
ratio scaling, i.e. more than ordinal; (2) the distribution of the population scores
is normal; and (3) the variances of both variables are equal or homogeneous.
The term parameter refers to a measure which describes the distribution of the
population such as the mean or variance. Since parametric tests are based on the
assumption that we know certain characteristics of the population from which
the sample is drawn, they are called parametric tests. Non-parametric or
distribution-free tests are so named because they do not depend on assumptions
about the precise form of the distribution of the sampled populations.

However, the need to meet these three conditions for using parametric tests
has been strongly questioned. Some of the arguments will be mentioned here
and these will be simply stated, with sources provided where further details can
be found. As far as the first condition is concerned, level of measurement, it has
been suggested that parametric tests can also be used with ordinal variables
since tests apply to numbers and not to what those numbers signify (for
example, Lord 1953). Thus, for example, we apply these tests to determine if
two scores differ. We know what these scores indicate, but the test obviously
does not. Therefore, the data are treated as if they are of interval or ratio
scaling. Furthermore, it can be argued that since many psychological and
sociological variables such as attitudes are basically ordinal in nature (see p.
58), parametric tests should not be used to analyze them if this first condition
is valid. However, it should be noted that parametric tests are routinely applied
to such variables.
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With respect to the second and third conditions, the populations being
normally distributed and of equal variances, a number of studies have been
carried out (for example, Boneau 1960; Games and Lucas 1966) where the
values of the statistics used to analyze samples drawn from populations which
have been artificially set up to violate these conditions have been found not to
differ greatly from those for samples which have been drawn from populations
which do not violate these conditions. Tests which are able to withstand such
violations are described as being robust.

One exception to this general finding was where both the size of the samples
and the variances were unequal, although some have argued that this exception
applies even with equal sample sizes (Wilcox 1987). Another exception was
where both distributions of scores were non-normal. In such circumstances, it
may be prudent to compare the results of a non-parametric test with those of a
parametric test. Where the distributions of scores are not normal, it may also be
worth running a parametric test on the scores as they are and after they have
been transformed closer to normality. For more details on transforming scores
to normality, see Mosteller and Tukey (1977). It may also be more desirable to
use non-parametric tests when the size of the samples is small, say under 15,
since in these circumstances it is more difficult to determine the extent to which
these conditions have been met. A fuller description of non-parametric tests
may be found in Siegel and Castellan (1988) or Conover (1980).

CATEGORICAL VARIABLES AND NON-PARAMETRIC
TESTS

Binomial test for one dichotomous variable

The binomial test is used to compare the frequency of cases actually found in
the two categories of a dichotomous variable with those which are expected on
some basis. Suppose, for example, that we wanted to find out whether the ratio
of female to male workers in the industry covered by our Job Survey was the
same as that in the industry in general, which we knew to be 1:3. We could do
this by carrying out a binomial test in which the proportion of women in our
survey was compared with that of an expected proportion of 1:4 or one out of
every four workers.

To do this with SPSS, we would use the following sequence:
 

�Statistics �Nonparametric Tests �Binomial…[opens Binomial
Test dialog box shown in Box 7.1]
�gender ������button [puts gender under Test Variable List:] �box called
Test Proportion: and type .75 �OK

 
Since males have been coded as 1, they form the first category and the
proportion of them becomes 3:4 or 0.75. The default value is 0.5. The two
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Box 7.1 Binomial Test dialog box

categories compared are taken from the data by default (Get from data) so the
lower category (e.g. 1) of a dichotomous variable such as gender forms one
group and the higher category (e.g. 2) the other group. If there are more than
two groups (such as in ethnicgp) and we wish to compare two of them (such as
Asian and West Indian workers), we would have to select these two groups.
Sometimes it may be possible to define our two groups by using a cut-off point.
For instance, if we wished to determine if there were equal numbers of black
and white workers, we could do this by typing 1 in the box entitled Cut point:.
All cases equal to or less than this point form the first category, while all the
others form the second category.

The output for the first procedure is displayed in Table 7.2. (It should be
noted that there are no zeros before the decimal points; this reflects a general
tendency in SPSS that where the maximum value is one, there is no zero before
the decimal point.) As we can see, the number of males (thirty-nine) is only
slightly greater than that of females (thirty-one) and so it would appear from an
inspection of these figures that the ratio of males to females is nearer 1:1 than
3:1. The hypothesis that the proportion of males to females is 0.75 is rejected
since the probability of obtaining this result by chance is highly unlikely with p
equal to 0.000. SPSS gives p to three decimal places. Where, as in this case, p
consists of three zeros, the fourth decimal place is 5 which means that p is at
least 0.0005. Consequently, the difference between the obtained and
hypothesized outcome is interpreted as being statistically different. Therefore,
we would conclude that the ratio of male to female workers is not 3:1.
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The output for comparing the proportion of white and non-white workers is
shown in Table 7.3. The number of white workers (thirty-six) is almost the same
as that of non-white ones (thirty-four), so the ratio is close to 1:1. The
hypothesis that there are equal numbers of white and non-white workers is
accepted since the probability of obtaining this result by chance is high (i.e. p
=0.90). In other words, since there is no significant difference between the
obtained and the hypothesized result, we would conclude that there are equal
numbers of white and non-white workers.

Incidentally, the similarity of these examples to those used to illustrate the
notion of significance testing in the previous chapter should be noted, except
that there we were comparing the frequency of finding one tail (or one male) to
every five heads (or five females) against an expected frequency or probability
of 0.5. To work this out using SPSS, we would have to create a data file which
consisted of one sequence of such a frequency and then carry out a binomial
test on it.

Chi-square test for one sample

If we want to compare the observed frequencies of cases with those expected in
a variable which has more than two categories, then we use a chi-square or c2
(pronounced ‘kye-square’) test rather than a binomial test. If, for instance, we
wished to know whether there were equal numbers of workers from the four

Table 7.3 Binomial test comparing proportion of whites and non-whites (Job Survey)

Table 7.2 Binomial test comparing proportion of men and women (Job Survey)

a. Alternative hypothesis states that the proportion of cases in the first group <.75.
b. Based on Z Approximation.

a. Bazed on Z Approximation.
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different ethnic groups coded in our Job-Survey data, then we would use a chi-
square test for one sample. We would use the following procedure to do this.

� Statistics �Nonparametric Tests �Chi-Square…[opens Chi-
Square Test dialog box shown in Box 7.2]
�ethnicgp ������button [puts ethnicgp under Test Variable List:] �Use
specified range and type 1 [in box labelled Lower:] �box called Upper:
and type 4 �OK

 
The range of categories to be examined needs to be specified if not all of them
are to be included. In this example, we have chosen to exclude the ‘other’
category by listing categories one to four. This fifth category would have been
included in this analysis by default if we had not specifically excluded it.

The expected frequencies are assumed to be equal, unless explicitly specified
otherwise. In other words, in this case we are testing the hypothesis that the four
categories will contain the same number of workers, or one in four. Should we
have expected them to be different, then we need to list these expected
frequencies. If, for example, we knew that in the industry covered by our Job
Survey the ratio of workers in these four categories was 95:2:2:1 and we wished
to find out if our sample was similar to the population in this respect, we would
do this by specifying these expected frequencies by selecting Values: (in the
section labelled Expected Values), typing the first value in the adjoining box,
selecting Add and repeating this sequence for the other three expected

Box 7.2 Chi-Square Test dialog box
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frequencies before selecting OK. Expected frequencies need to be greater than
zero and are specified as a proportion of those listed. In this case, 95 out of 100
are expected to be white since the total adds up to 100 (95+2+2+1).

The output for the first procedure is shown in Table 7.4. Note that for this
test, the display includes the numbers of the categories, the number of cases
observed and expected in each of these categories, the residual or difference
between the observed and the expected frequencies, the chi-square statistic, the
degrees of freedom, and the level of significance.

The term degrees of freedom (df), associated with any statistic, refers to the
number of components which are free to vary. It is a difficult concept which is
well explained elsewhere (Walker 1940). In this case, they are calculated by
subtracting 1 from the number of categories. Since there are four categories,
there are three degrees of freedom (i.e. 4-1). What this means essentially is that
if we know the size of the sample and if we know the observed frequencies in
three of the four categories, then we can work out from this the observed
frequencies in the remaining category. In other words, if we know one of the
values, the other three are free to vary.

As we can see, the observed frequencies are significantly different (p<
0.0005) from the expected ones of there being an equal number of cases in each
of the four categories. In other words, since the probability of obtaining this
result by chance is very low (at least 5 out of 10,000 times), we would conclude
that the number of workers in each ethnic group is not equal.

Table 7.4 One-sample chi-square test comparing number of people in ethnic groups
(Job Survey)
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There is a restriction on using chi-square when the expected frequencies are
small. With only two categories (or one degree of freedom), the number of cases
expected to fall in these categories should be at least 5 before this test can be
applied. If the expected frequencies are less than 5, then the binomial test
should be used instead. With three or more categories (or more than one degree
of freedom), chi-square should not be used when any expected frequency is
smaller than 1 or when more than 20 per cent of the expected frequencies are
smaller than 5. In these situations, it may be possible to increase the expected
frequencies in a category by combining it with those of another.

An example of the latter case is the second statistical analysis we asked for, the
output of which is presented in Table 7.5. Here, three of the expected frequencies
fall below 2, one of which is below 1. We would need a much larger sample of
participants to use a chi-square test on these data. If we had only two categories,
whites and non-whites, we would require a minimum sample of 100 in order to
have an expected frequency of 5 in the non-white category. Consequently, it
would be necessary to use a binomial test to determine if the frequency of non-
whites in the Job Survey is different from a hypothesized one of 5 per cent.

Chi-square test for two or more unrelated
samples

If we wanted to compare the frequency of cases found in one variable in two or
more unrelated samples or categories of another variable, we would also use

Table 7.5 Chi-square test with insufficient cases (Job Survey)
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the chi-square test. We will illustrate this test with the relatively simple example
in which we have two dichotomous variables, gender (male and female) and
ethnic group (white and non-white), although it can also be applied to two
variables which have three or more categories. Suppose, for instance, we wished
to find out whether the proportion of male to female workers was the same in
both white and black workers.

First of all, we have to recode the category of ethnic group, so that all the
non-whites are coded as 2. If we wanted to assign value labels, we would have
to provide new ones for the two groups. Second, because the chi-square test for
two or more unrelated samples is only available as part of the SPSS procedure
for generating tables which show the distribution of two or more variables, we
have to use the relevant options in this Crosstabs procedure. Further details on
it can be found in the next chapter, where its operation is described more fully.
In order not to replicate this information, only the basic steps for generating chi-
square will be outlined here, which for this analysis are as follows:

�Statistics �Summarize �Crosstabs…[opens Crosstabs dialog box
shown in Box 7.3]

Box 7.3 Crosstabs dialog box
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�gender ������button [puts gender under Row[s]:] �ethncgpc
� �����button [puts ethncgpc  under Column[s]:] � Cells…[opens
Crosstabs: Cell Display subdialog box shown in Box 7.4]
�Expected [in Counts section] �Continue [closes Crosstabs: Cell
Display subdialog box]
�Statistics…[opens Crosstabs: Statistics subdialog box shown in
Box 7.5]
�Chi-square �Continue [closes Crosstabs: Statistics subdialog box]
�OK

Box 7.4 Crosstabs: Cell Display subdialog box

Box 7.5 Crosstabs: Statistics subdialog box
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Since chi-square is based on comparing the expected with the observed
frequency in each cell, it is useful to have a display of the expected frequencies.

The output from this procedure is shown in Table 7.6 which includes a table
of the expected and observed frequencies in each cell, the Pearson chi-square
statistic, the degrees of freedom, the significance level and the minimum
expected frequency or count (footnote b). This last value is useful when the
degrees of freedom are larger than one, because, as in the case of a one-sample
chi-square, this test should not be used if any cell has an expected frequency of
less than 1, or if 20 per cent or more of the cells have an expected frequency of
less than 5. As the minimum expected frequency in any one cell is 15.1 (for
non-white females) and there are no cells with an expected frequency of less
than 5, it is appropriate to use this test. The degrees of freedom are calculated
by subtracting 1 from the number of categories in each of the two variables and
multiplying the remaining values (i.e. (2-1)(2-1)=1). The observed frequencies
are displayed above the expected ones in each of the cells. Thus, the observed
frequency of white males is 22, while the expected one is 20.1. Two chi-
squares are given. The first chi-square is the uncorrected value while the
second incorporates Yates’s correction which assumes that the frequencies can

Table 7.6 Chi-square test produced by Crosstabs comparing number of white and
non-white men and women (Job Survey)

a. Computed only for a 2×2 table
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 15.06.
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be non-integral (i.e. consist of whole numbers and fractions or decimals). Since
the value of chi-square is not significant, this means that the proportion of male
to female workers is the same for both whites and non-whites.

McNemar test for two related samples

This test is used to compare the frequencies of a dichotomous variable from the
same cases at two points in time, in two treatments, or from two samples which
have been matched to be similar in certain respects such as having the same
distributions of age, gender, and socio-economic status. Suppose, for example,
we wanted to find out if there had been any changes in the attendance of
workers at a firm’s monthly meetings in two consecutive months (attend1 and
attend2). The use of tests to analyze information from two or more related
samples will be illustrated with the small set of data in Table 7.7. This consists
of one example of the three kinds of variables (categorical, ordinal and interval/
ratio) measured at three consecutive monthly intervals on twelve workers. The
categorical variable is their attendance at the firm’s monthly meeting (attend1
to attend3), the ordinal variable is the quality of their work as rated by their
supervisor (qual1 to qual3), while the interval/ratio variable is their self-
expressed job satisfaction (satis1 to satis3). A study in which data are collected
from the same individuals at two or more points is known as a prospective,
longitudinal, or panel design. Consequently, this example will be referred to as
the Panel Study.

To conduct a McNemar test comparing attend1 and attend2 we use the
following SPSS procedure:
 

�Statistics �Nonparametric Tests �2 Related Samples…[opens
Two-Related-Samples Tests dialog box shown in Box 7.6]
�attend1 [puts attend1 beside Variable 1: in Current Selections sec-
tion] �attend2 [puts attend2 beside Variable 2: in Current Selections

Table 7.7 The Panel-Study data
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section] ������button [puts attend1 and attend2 under Test Pair[s] List:]
�Wilcoxon [to de-select] �McNemar �OK

 
The output for this procedure is presented in Table 7.8. The table shows the num-
ber of people whose attendance changed or remained the same from the first to

Box 7.6 Two-Related-Samples Tests dialog box

Table 7.8 McNemar test comparing attendance across two months (Panel Study)
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the second month. Since attendance is coded as 1 and non-attendance as 2, we can
see that six workers attended the first but not the second meeting and that two
attended the second but not the first one. If fewer than 26 cases change from one
sample to another as they did here, the binomial test is computed. Otherwise, the
one-sample chi-square test is used. As the two-tailed level of probability is greater
than 0.05, this means that there was no significant change in attendance between
the first and second meeting. In other words, we would conclude that a similar
number of people attended the first and the second meeting.

Cochran Q test for three or more related
samples

To compare the distribution of a dichotomous variable across three or more
related samples, the Cochran Q test is applied. Thus, we would use the
following procedure to compute this test if we wanted to examine attendance at
the firm’s meeting over the three-month period in the Panel Study:
 

�Statistics �Nonparametric Tests �K Related Samples…[opens
Tests for Several Related Samples dialog box shown in Box 7.7]
�attend1 ������button [puts attend1 under Test Variables:] �attend2
������button [puts attend2 under Test Variables:] �attend3 ������button
[puts attend3 under Test Variables:] �Friedman [to de-select]
�Cochran’s Q �OK

 
This procedure produced the output in Table 7.9. This shows the number of
people who did and did not attend the three meetings. Once again, as the

Box 7.7 Tests for Several Related Samples dialog box
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probability level is above 0.05, this indicates there is no significant difference in
attendance over the three meetings.

NON-CATEGORICAL VARIABLES AND
NON-PARAMETRIC TESTS

Kolmogorov-Smirnov test for one sample

This test is used to compare the observed frequencies of the values of an ordinal
variable, such as rated quality of work, against some specified theoretical
distribution. It determines the statistical significance of the largest difference
between them. In SPSS, the theoretical distribution can be Normal, Uniform,
Poisson or Exponential. These are the keywords which must be used to specify
which one of these three options is to be selected. Thus, for example, if we
expected the five degrees of rated quality of work (i.e. very poor, poor, average,
good, and very good) in the Job Survey to appear equally often (i.e. as a uniform
distribution), we would use the following procedure:
 

�Statistics �Nonparametric Tests �1-Sample K-S…[opens One-
Sample Kolmogorov-Smirnov Test dialog box shown in Box 7.8]
�qual ������button [puts qual under Test Variable List:] �Normal [to de-
select] �Uniform [under Test Distribution] �OK

 
The lowest and the highest values in the sample data will be used. In other
words, if the lowest rating was 2 and the highest 4, then SPSS will compare
the distribution of this range of values. The sample mean and standard deviation

Table 7.9 Cochran Q test comparing attendance across
three months (Panel Study)
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Box 7.8 One-Sample Kolmogorov-Smirnov Test dialog box

are used for the normal distribution and the sample mean for the Poisson
distribution.

The output from this procedure is displayed in Table 7.10. The largest
absolute, positive and negative differences between the observed and theoretical
distributions are printed, together with the Kolmogorov-Smirnov Z statistic and
its probability value. The largest absolute difference is simply the largest
difference, regardless of its direction. Since p is well below the two-tailed 0.05

Table 7.10 One-sample Kolmogorov-Smirnov test
comparing distribution of quality (Job Survey)
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level, the difference is significant. This means the number of cases at each of the
five levels is not equal.

Kolmogorov-Smirnov test for two unrelated
samples

This test is also used to compare the distribution of values in two groups. Thus,
for example, the following procedure is used to see if the distribution of the
ratings of quality of work among men is different from that among women:
 

�Statistics �Nonparametric Tests �2 Independent Samples…[opens
Two-Independent-Samples Tests dialog box shown in Box 7.9]
�qual ������button [puts qual under Test Variable List:] �gender [puts
gender under Grouping Variable:] �Define Groups…[opens Two
Independent Samples: Define Groups subdialog box shown in Box 7.10]
�in box beside Group 1: type 1 �box beside Group 2: and type 2
�Continue [closes Two Independent Samples: Define Groups subdia-
log box]
�Mann-Whitney U [to de-select] �Kolmogorov-Smirnov Z �OK

 
This procedure produced the output in Table 7.11. Once again, the largest
absolute, positive and negative differences are shown, together with the Z

Box 7.9 Two-Independent-Samples Tests dialog box
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statistic. The number of cases or participants in each of the two groups being
compared is also shown. When the number of participants in both groups is not
equal and below 40, the chi-square probability tables should be consulted. The
degrees of freedom in these circumstances are always 2. The chi-square value
for 2 degrees of freedom confirms that this difference is non-significant. In
other words, there is no difference in the distribution of quality of work ratings
for men and women.

Median test for two or more unrelated samples

The median test is used to determine if the distribution of values either side of
a common median differs for two or more unrelated samples. If we wanted to
determine if the distribution of rated quality of work was similar for men and
women, we would use the following procedure:

Box 7.10 Two Independent Samples: Define Groups subdialog box

Table 7.11 Two-sample Kolmogorov-Smirnov test comparing distribution
of quality in men and women (Job Survey)
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�Statistics �Nonparametric Tests �K Independent Samples…
[opens Tests for Several Independent Samples dialog box shown in
Box 7.11]
�qual ������button [puts qual under Test Variable List:] �gender [puts
gender under Grouping Variable:] �Define Range…[opens a Define
Range subdialog box like that shown in Box 7.12]
�in box beside Minimum: type 1 �box beside Maximum: and type 2
�Continue [closes Several Independent Samples: Define Range sub-
dialog box]
�Kruskal-Wallis H [to de-select] �Median �OK

 
This procedure gave the output in Table 7.12. It has a 2×2 table showing the
number of cases above the median and less than or equal to it for males and

Box 7.11 Tests for Several Independent Samples dialog box

Box 7.12 Several Independent Samples: Define Range subdialog box
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females. Since males are coded 1, we can see that there are twenty men above
the median and nineteen below or equal to it. Also given is the median value
which is 3, the chi-square statistic and its significance. Because p is greater than
0.05 and therefore not significant, the median rating of work quality does not
differ for men and women.

Mann-Whitney U test for two unrelated samples

The Mann-Whitney test is more powerful than the median test because it
compares the number of times a score from one of the samples is ranked higher
than a score from the other sample, rather than the number of scores which are
above the median. If the two groups are similar, then the number of times this
happens should also be similar for the two groups. The procedure for comparing
the rated quality of work for men and women is:
 

�Statistics �Nonparametric Tests �2 Independent Samples…
[opens Two-Independent-Samples Tests dialog box shown in Box 7.9]
�qual ������button [puts qual under Test Variable List:] �gender [puts
gender under Grouping Variable:] �Define Groups…[opens Two
Independent Samples: Define Groups subdialog box shown in Box
7.10]
�in box beside Group 1: type 1 �box beside Group 2: and type 2

Table 7.12 Median test comparing quality in men and women
(Job Survey)
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�Continue [closes Two Independent Samples: Define Groups subdialog
box]
[�Mann-Whitney U already selected] �OK

 
The output produced by this procedure is shown in Table 7.13. It gives the mean
rank of the ratings for men and women, the number of cases on which these are
based, the Mann-Whitney U statistic, and the Wilcoxon W (which is the sum of
the ranks of the smaller group and which we can ignore). Since it is necessary
to correct for the number of scores which receive, or tie for, the same rank, it
does this by giving the Z statistic and its significance level. Although the
significance of U is not shown here, correcting for ties increases the value of Z
slightly. As the Z statistic is still not significant (i.e. p is greater than 0.05), there
is no difference between men and women in the mean ranking of the rated
quality of their work.

Kruskal-Wallis H test for three or more
unrelated samples

The Kruskal-Wallis H test is similar to the Mann-Whitney U test in that the
cases in the different samples are ranked together in one series. However, unlike
the Mann-Whitney U test, it can be used to compare scores in more than two
groups. To compare the rated quality of work for people in the four ethnic
groups, we use the following procedure:
 

�Statistics �Nonparametric Tests �K Independent Samples…
[opens Tests for Several Independent Samples dialog box shown in Box
7.11]

Table 7.13 Mann-Whitney test comparing quality in
men and women (Job Survey)

a. Grouping Variable: GENDER
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�qual ������button [puts qual under Test Variable List:] �ethnicgp [puts
ethnicgp under Grouping Variable:] �Define Range…[opens a Define
Range subdialog box like that shown in Box 7.12]
�in box beside Minimum: type 1 �box beside Maximum: and type 4
�Continue [closes Several Independent Samples: Define Range subdi-
alog box]
�Kruskal-Wallis H �OK

 
This procedure produced the output in Table 7.14. It shows the mean rank for
each group, the number of cases in them, and the chi-square statistic and its
significance level corrected for rank ties. Since the significance level is
greater than 0.05 on both tests, this indicates there is no difference between
workers of the four ethnic groups in the mean ranking of the rated quality of
their work.

Sign test for two related samples

The sign test compares the number of positive and negative differences between
two scores from the same or similar (i.e. matched) samples such as those in the
Panel Study, and ignores the size of these differences. If the two samples are
similar, then these differences should be normally distributed. Thus, for
example, we could compare the rated quality of work at two of the times (say,
qual1 and qual2) in the Panel Study. If the number of positive differences (i.e.
decreases in ratings) was similar to the number of negative ones (i.e. increases
in ratings), this would mean that there was no change in one particular direction

Table 7.14 Kruskal-Wallis test comparing quality between
ethnic groups (Job Survey)

a. Kruskal Wallis Test
b. Grouping Variable: ETHNICGP
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between the two occasions. To compute this comparison, we use the following
procedure:
 

�Statistics �Nonparametric Tests �2 Related Samples…[opens
Two-Related-Samples Tests dialog box shown in Box 7.6]
�qual1 [puts qual1 beside Variable 1: in Current Selections section]
�qual2 [puts qual2 beside Variable 2: in Current Selections section]
������button [puts qual1 and qual2 under Test Pair[s] List:] �Wilcoxon
[to de-select] �Sign �OK

 
This procedure produced the output in Table 7.15. It shows the number of
negative, positive and zero (ties) differences. There are three ties, five positive
differences and four negative ones. Since fewer than twenty-six differences
were found, it gives the binomial significance level. If more than twenty-five
differences had been obtained, it would have given the significance level for the
Z statistic. With almost equal numbers of positive and negative differences, it is
not surprising that the test is non-significant. In other words, there is no change
in rated quality of work over the two months.

Wilcoxon matched-pairs signed-ranks test for
two related samples

This test, like the Mann-Whitney, takes account of the size of the differences
between two sets of related scores by ranking and then summing those with
the same sign. If there are no differences between the two samples, then the

Table 7.15 Sign test comparing quality across two months
(Panel Study)
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number of positive signs should be similar to that of the negative ones. This test
would be used, for example, to determine if the rated quality of work in the
Panel Study was the same in the first and second month (qual1 and qual2). To
do this we would use the following procedure:

�Statistics �Nonparametric Tests �2 Related Samples…[opens
Two-Related-Samples Tests dialog box shown in Box 7.6]
�qual1 [puts qual1 beside Variable 1: in Current Selections section]
�qual2 [puts qual2 beside Variable 2: in Current Selections section]
������button [puts qual1 and qual2 under Test Pair[s] List:] �Wilcoxon
�OK

 
Table 7.16 contains the output for this procedure. It displays the mean rank and
sum of ranks for the negative and positive ranks, the number of cases on which
these are based together with the number of tied ranks, the test statistic Z, and
its significance level. We obtain the same result with this test. The mean rank of
rated quality of work does not differ between the two months.

Friedman test for three or more related samples

If we wanted to compare the scores of three or more related samples, such as
the rated quality of work across all three months rather than just two of them,

Table 7.16 Wilcoxon matched-pairs signed-ranks test comparing
quality across two months (Panel Study)
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we would use the Friedman two-way analysis of variance test. It ranks the
scores for each of the cases and then calculates the mean rank score for each
sample. If there are no differences between the samples, their mean ranks
should be similar. We would use the following procedure to compare the quality
of work over the three months in the Panel Study:
 

�Statistics �Nonparametric Tests �K Related Samples…[opens
Tests for Several Related Samples dialog box shown in Box 7.7]
�qual1 ������button [puts qual1 under Test Variables:] �qual2 ������but-
ton [puts qual2 under Test Variables:] �qual3 ������button [puts qual3
under Test Variables:] �Friedman �OK

 
The output produced by this procedure is shown in Table 7.17. It contains the
mean rank for the three samples, the number of cases in them, the chi-square
statistic, its degrees of freedom (which is the number of samples minus 1), and
its significance level. The non-significant chi-square means there is no
difference in the mean ranks of rated quality of work across the three months.

NON-CATEGORICAL VARIABLES AND
PARAMETRIC TESTS

t test for one sample

This test is used to determine if the mean of a sample is similar to that of the
population. If, for example, we knew that the mean score for job satisfaction for
workers in the industry covered in the Job Survey was 10 and we wanted to find
out if the mean of our sample was similar to it, we would carry out a t test. To
do this with SPSS, we carry out the following procedure:

Table 7.17 Friedman test comparing quality across
three months (Panel Study)



142 Bivariate analysis: exploring differences

�Statistics �Compare Means �One-Sample T Test…[opens One-
Sample T Test dialog box shown in Box 7.13]
�satis ������button [puts satis under Test Variable[s]:] �type 10 in box
beside Test Value: �OK

 
The output for this procedure is shown in Table 7.18. We see that there is a
significant difference between the population mean of 10 and the sample mean
of 10.84 at the two-tailed probability level of 0.04.

Box 7.13 One-Sample T Test dialog box

Table 7.18 One-sample t test (job Survey)
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Standard error of the mean

It is important to outline more fully what the standard error of the mean is since
this important idea also constitutes the basis of other parametric tests such as the
analysis of variance. One of the assumptions of many parametric tests is that the
population of the variable to be analyzed should be normally distributed. The
errors of most distributions are known to take this form. For example, if a large
group of people were asked to guess today’s temperature, the distribution of
their guesses would approximate that of a normal distribution, even if the
temperature does not itself represent a normal distribution. In addition, it has
been observed that the distribution of certain characteristics also takes this form.
If, for example, you plot the distribution of the heights of a large group of adult
human beings, it will be similar to that of a normal distribution.

If we draw samples from a population of values which is normally
distributed, then the means of those samples will also be normally distributed.
In other words, most of the means will be very similar to that of the population,
although some of them will vary quite considerably. The standard error of the
mean represents the standard deviation of the sample means. The one-sample t
test compares the mean of a sample with that of the population in terms of how
likely it is that that difference has arisen by chance. The smaller this difference
is, the more likely it is to have resulted from chance.

t test for two unrelated means

This test is used to determine if the means of two unrelated samples differ. It
does this by comparing the difference between the two means with the standard
error of the difference in the means of different samples:

 

The standard error of the difference in means, like the standard error of the
mean, is also normally distributed. If we draw a large number of samples from
a population whose values are normally distributed and plot the differences in
the means of each of these samples, the shape of this distribution will be normal.
Since the means of most of the samples will be close to the mean of the
population and therefore similar to one another, if we subtract them from each
other the differences between them will be close to zero. In other words, the
nearer the difference in the means of two samples is to zero, the more likely it
is that this difference is due to chance.

To compare the means of two samples, such as the mean job satisfaction of
male and female workers in the Job Survey, we would use the following
procedure:

�Statistics �Compare Means � Independent-Samples T Test…
[opens Independent-Samples T Test dialog box shown in Box 7.14]
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�satis ������button [puts satis under Test Variable[s]:] �gender [puts gen-
der under Grouping Variable:] �Define Groups…[opens Define
Groups subdialog box shown in Box 7.15]
�in box beside Group 1: type 1 �box beside Group 2: and type 2
�Continue [closes Define Groups subdialog box]
�OK

There are two ways of defining the two groups. First, we can define them in
terms of their two codes (1 and 2) as has been done above. Second, one of the
values can be used as a cut-off point, at or above which all the values constitute
one group while those below form the other group. In this instance, the cut-off
point is 2 which would be placed in parentheses after gender.

Box 7.14 Independent-Samples T Test dialog box

Box 7.15 Define Groups subdialog box
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The output for this procedure is displayed in Table 7.19. The number of cases
in the two groups, together with their means, standard deviations and standard
errors, is listed. Since we do not know what the standard error of the difference
in means is of the population in question, we have to estimate it. How this is
done depends on whether the difference in the variances of the two samples is
statistically significant. This information is provided by the Levene’s (1960) test
for equality of variances. Levene’s test is a one-way analysis of variance on the
absolute (i.e. ignoring the minus sign) deviation scores of the groups where the
group mean is subtracted from each of the individual scores within that group.
A one-way analysis of variance for three or more groups is described below. In
this case the one-way analysis would be done on only two groups. If Levene’s
test is significant (i.e. has a probability of 0.05 or less), then the variances are
unequal and so the separate variance estimate is used to calculate the t value. If
the variances are equal, the pooled variance estimate is employed for this
purpose. In Table 7.19, the variances are not statistically different since the p
value of Levene’s test is 0.733. Consequently, we look at the t value based on
equal variances. This is non-significant with a two-tailed p value of 0.771. In
other words, we would conclude that there is no significant difference in mean
job satisfaction between males and females. The two-tailed test of significance
is provided by default. To calculate the one-tailed level of significance, divide
the two-tailed one by 2 which in this case would still be non-significant at 0.386
(0.771/2).

It should be pointed out that the variance, the standard deviation and the
standard error of a sample are related. The variance or mean-squared deviation
is calculated by subtracting the mean of the sample from each of its scores (to
provide a measure of their deviation from the mean), squaring them, adding
them together and dividing them by one less than the number of cases. Since the
deviations would sum to zero, they are squared to make the negative deviations
positive. The standard deviation is simply the square root of the variance. The
advantage of the standard deviation over the variance is that it is expressed in
the original values of the data. For example, the standard deviation of job
satisfaction is described in terms of the 20 points on this scale. The standard
error is the standard deviation divided by the square root of the number of
cases. The relationships between these three measures can be checked out on the
statistics shown in Table 7.19.

Unrelated t test and ordinal data

Some people have argued that parametric tests should only be used on
interval/ratio data (for example, Stevens 1946). Others, as we have mentioned
earlier, have reasoned that such a restriction is unnecessary. In view of this
controversy, it may be interesting to see whether the use of an unrelated t test on
an ordinal variable such as rated quality of work gives very dissimilar results to
that of the Mann-Whitney previously used. According to Siegel and Castellan
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(1988), the Mann-Whitney test is about 95 per cent as powerful as the t test.
What this means is that the t test requires 5 per cent fewer participants than the
Mann-Whitney test to reject the null hypothesis when it is false. The following
procedure was used to generate the output in Table 7.20:
 

�Statistics �Compare Means � Independent-Samples T Test…
[opens Independent-Samples T Test dialog box shown in Box 7.14]
�qual ������button [puts qual under Test Variable[s]:] �gender [puts
gender under Grouping Variable:] �Define Groups…[opens Define
Groups subdialog box shown in Box 7.15]
�in box beside Group 1: type 1 �box beside Group 2: and type 2
�Continue [closes Define Groups subdialog box]
�OK

 
As can be seen, this test also indicates that there is no significant difference
between men and women in the mean of their rated quality of work.

One-way analysis of variance for three or more
unrelated means

To compare the means of three or more unrelated samples, such as the mean job
satisfaction of the four ethnic groups in the Job Survey, it is necessary to
compute a one-way analysis of variance. This is essentially an F test in which an
estimate of the between-groups variance (or mean-square, as the estimate of the
variance is referred to in analysis of variance) is compared with an estimate of
the within-groups variance by dividing the former by the latter:
 

 
The total amount of variance in the dependent variable (i.e. job satisfaction) can
be thought of as comprising two elements: that which is due to the independent
variable (i.e. ethnic group) and that which is due to other factors. This latter
component is often referred to as error or residual variance. The variance that is
due to the independent variable is frequently described as explained variance. If
the between-groups (i.e. explained) estimated variance is considerably larger
than that within-groups (i.e. error or residual), then the value of the F ratio will
be higher, which implies that the differences between the means are unlikely to
be due to chance.

The within-groups mean-square or estimated variance is its sum-of-squares
divided by its degrees of freedom. These degrees of freedom are the sum of
the number of cases minus one in each group (i.e. [the number of cases in
group one-1]+[the number of cases in group two-1] and so on). The sum-of-
squares is the sum of squared differences between each score in a group and
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its mean, summed across all groups. The between-groups sum-of-squares, on
the other hand, is obtained by subtracting each group’s mean from the overall
(total or grand) mean, squaring them, multiplying them by the number of cases
in each group, and summing the result. It can also be calculated by subtracting
the within-groups sum-of-squares from the total sum-of-squares since the total
sum-of-squares is the sum of the between- and within-groups sum-of-squares:

total sum-of-squares=between-groups (i.e. explained) sum-of-squares
+within-groups (i.e. error) sum-of-squares

The between-groups mean-square or estimated variance is its sum-of-squares
divided by its degrees of freedom. These degrees of freedom are the number of
groups minus one. The degrees of freedom for the total sum-of-squares are the
sum of those for the within- and between-groups sum-of-squares or the total
number of subjects minus one. Although this test may sound complicated, the
essential reasoning behind it is that if the groups or samples come from the same
population, then the between-groups estimate of the population’s variance
should be similar to the within-groups estimated variance.

To compare the mean job satisfaction of the four ethnic groups in the Job
Survey, we first have to define the groups we want to analyze. As there are no
participants identified as ‘Other’, we only have four groups. If we had a fifth
group, which we wanted to exclude, we would have to define that group as
missing. We then carry out the following procedure:
 

�Statistics �Compare Means �One-Way ANOVA…[opens One-
Way ANOVA dialog box shown in Box 7.16]

Box 7.16 One-Way ANOVA dialog box
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�satis ������button [puts satis under Dependent List:] �ethnicgp [puts
ethnicgp under Factor:]
�OK

 
The output for this procedure is displayed in Table 7.21. The F ratio, which is
the between-groups mean square divided by the within-groups one (2.912/
11.289=0.258), is non-significant. Consequently, there is no significant
difference in job satisfaction between the four ethnic groups.

The number of cases in each group, their means, standard deviations and the
other statistics shown in Table 7.22 are produced by selecting Options… (which
opens the One-Way ANOVA: Options subdialog box shown in Box 7.17) and
Descriptive.

The F test or ratio tells us only whether there is a significant difference
between one or more of the groups. It does not inform us where this difference

 

Table 7.21 A one-way analysis of variance table (Job Survey)

Table 7.22 Descriptive group statistics with one-way analysis of variance comparing job
satisfaction across ethnic groups (Job Survey)
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Box 7.17 One-Way ANOVA: Options subdialog box

lies. To determine this, we need to carry out further statistical tests. Which tests
we use depends on whether or not we predicted where the differences would be.
If, for example, we predicted that whites would be less satisfied than Asians,
then we would carry out an unrelated t test as described above, using a one-
tailed level of significance. We could also do this by selecting the Contrasts
option which opens the One-Way ANOVA: Contrasts subdialog box displayed
in Box 7.18. In this option, for instance, we can specify any two groups by
defining one of them (i.e. whites) as minus one (-1), the other one (i.e. Asians)

Box 7.18 One-Way ANOVA: Contrasts subdialog box
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as one (1), and the remaining ones (i.e. West Indians and Africans) as zeros. To
do this, we type -1 in the box beside Coefficients:, select Add, type 1 in the box
beside Coefficients:, select Add, type 0 in the box beside Coefficients:, select
Add, type 0 in the box beside Coefficients:, select Add, type 0 and then
Continue.

The output for this option is shown in Table 7.23. This gives the value for the
contrast, its standard error, and both the pooled and separate variance estimates
(i.e. assuming equal variances and not assuming equal variances, respectively).
However, to determine which of these to use, we need to know whether the
variances of the two groups differ. To do this, we obtain the standard deviations
as reported in Table 7.22, convert them to variances by squaring them, divide
the larger variance by the smaller one (F=12.934/10.785=1.20) and look up the
result in a table of critical values for F. Alternatively we can do this using
Levene’s test on the t test procedure. Because the value of the F test is non-
significant, we use the pooled variance estimate. The difference in job
satisfaction between whites and those of Asian ethnic origin is non-significant.

If, however, we had not expected any differences, then we would need to take
into account the fact that if we carried out a large number of comparisons some
of these would be significant just by chance. Indeed, at the 5 per cent level of
significance, 5 per cent, or one in twenty, comparisons could be expected to be
significant by definition. A number of tests which take account of this fact have
been developed and are available on the Post Hoc option which opens the One-
Way ANOVA: Post Hoc Multiple Comparisons subdialog box presented in
Box 7.19. Because these tests are carried out after the data have been initially
analyzed, they are referred to as post hoc or a posteriori tests. One of these,
the Scheffé test, will be briefly outlined. This test is the most conservative in
the sense that it is least likely to find significant differences between groups or,
in other words, to make a Type I error. It is also exact for unequal numbers of

Table 7.23 Statistics provided by a one-way contrast comparing job satisfaction in
groups 1 and 2 (Job Survey)
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Box 7.19 One-Way ANOVA: Post Hoc Multiple Comparisons subdialog box

subjects in the groups. To conduct a Scheffé test to compare job satisfaction
between every possible pair of ethnic groups, we select Scheffe and then
Continue.

The output for this test is shown in Table 7.24. This shows that there
were no significant differences between any of the groups, taken two at a
time.

Levene’s test for three or more unrelated
variances

If we were interested in determining whether the variances, rather than the
means, of three or more unrelated samples were different, we would use
Levene’s test. One reason for doing this is to find out if it is appropriate to use
analysis of variance to test for mean differences in the first place, since this
statistic is based on the assumption that the variances of the groups do not
differ too widely. In fact, if the number of subjects in each group and their
variances are unequal, then it is necessary to use a non-parametric test. The
Options subdialog box (shown in Box 7.17) provides Levene’s test when
Homogeneity-of-variance is selected. The output for this option comparing
the variances of job satisfaction across the four ethnic groups is presented in
Table 7.25. As we can see the variances of the four ethnic groups do not differ
significantly.
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Table 7.24 Statistics provided by a one-way Scheffé test comparing satisfaction across
ethnic groups (Job Survey)

Table 7.25 Output for Levene’s test for homogeneity of variances (Job Survey)

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size=6.071.

b. The group sizes are unequal. The harmonic mean of
the group sizes is used. Type I error levels are not

guaranteed.
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t test for two related means

To compare the means of the same participants in two conditions or at two
points in time, we would use a related t test. We would also use this test to
compare participants who had been matched to be similar in certain respects.
The advantage of using the same participants or matched participants is that the
amount of error deriving from differences between participants is reduced. The
unrelated t test compares the mean difference between pairs of scores within the
sample with that of the population in terms of the standard error of the
difference in means:
 

 
Since the population mean difference is zero, the closer the sample mean
difference is to zero, the less likely it is that the two sets of scores differ
significantly from one another.

The difference between a related and an unrelated t test lies essentially in the
fact that two scores from the same person are likely to vary less than two scores
from two different people. For example, if we weigh the same person on two
occasions, the difference between those two weights is likely to be less than the
weights of two separate individuals. This fact is reflected in the different way in
which the standard error of the difference in means is calculated for the two
tests, which we do not have time to go into here. The variability of the standard
error for the related t test is less than that for the unrelated one, as illustrated in
Figure 7.1. In fact, the variability of the standard error of the difference in
means for the related t test will depend on the extent to which the pairs of scores
are similar or related. The more similar they are, the less the variability will be
of their estimated standard error.

Figure 7.1 A comparison of the distribution of the standard error of the differences
in means for related and unrelated samples
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To compare two related sets of scores such as job satisfaction in the first two
months (satis1 and satis2) in the Panel Study, we would use the following
procedure:
 

�Statistics �Compare Means �Paired-Samples T Test…[opens
Paired-Samples T Test dialog box shown in Box 7.20] �satis1 [puts
satis1 beside Variable 1: in Current Selections section] �satis2 [puts
satis2 beside Variable 2: in Current Selections section] ������button [puts
satis1 and satis2 under Paired Variables:] �OK

 
This procedure produces the output in Table 7.26. The mean, standard
deviation, and standard error are given for the two sets of scores as well as for
the difference between them. In addition, the extent to which pairs of scores are
similar or correlated (see Chapter 8 for an exposition of correlation) is also
shown. As can be seen, the correlation between the two sets of scores is
significant (p=0.029) but the difference between their means is not significant
(p=0.742). In other words, mean job satisfaction does not differ between the
first and second month.

t test for two related variances

If we want to determine whether the variances of two related samples are
significantly different from one another, we have to calculate t using the
following formula (McNemar 1969) since it is not available on SPSS:

Box 7.20 Paired-Samples T Test dialog box
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To apply this formula to the job satisfaction variances in the above example, we
would first have to calculate their variances which is the square of their standard
deviations (i.e. 18.32 and 11.70). Substituting the appropriate values in the
above equation, we arrive at a t value of 0.91, which with 10 degrees of freedom
is not significant with a two-tailed test. To have been significant at this level, we
would have needed a t value of 2.228 or greater.

Multivariate analysis of variance for three or
more related means

The following section deals with a cluster of procedures that are highly complex
and which relate to an application that many readers are unlikely to encounter in
the normal course of events. Consequently, this section may either be omitted or
returned to after having read Chapter 9.

To compare three or more means from the same or matched subjects, such as
job satisfaction during three consecutive months, we would need to carry out a
multivariate analysis of variance (MANOVA) test which has one within-subjects
or repeated-measures variable. This variable, job satisfaction, is called a factor
and has three levels since it is repeated three times. This design is referred to

Table 7.26 Related t test comparing satisfaction across first two months (Panel Study)
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variously as a single group (or factor) repeated-measures and treatments-by-
subjects design. To conduct it on the present example, we would use the
following procedure:
 

�Statistics �General Linear Model �GLM—Repeated Measures…
[opens GLM—Repeated Measures Define Factor[s] dialog box shown
in Box 7.21]
�highlight factor1 type month in box beside Within-Subject Factor
Name: �box beside Number of Levels: and type 3 �Add �Define
[opens GLM—Repeated Measures subdialog box shown in Box 7.22]
� satis1 ������button [puts satis1 under Within-Subjects Variables
[month]:] �satis2 ������button �satis3 ������button �Options [opens
GLM—Repeated Measures: Options subdialog box shown in Box 7.23]
�Descriptive statistics �OK

 
The means and standard deviations of job satisfaction at the three times are
shown in Table 7.27.

The multivariate tests are presented in Table 7.28. Four multivariate tests are
provided to assess the significance of the repeated-measures effect. These are
Pillai’s trace criterion, Hotelling’s trace criterion, Wilks’ lambda, and Roy’s gcr
criterion. In many cases, all four tests give the same results (Stevens 1979).
Provided that the number of participants in each group is equal or almost equal,
it does not matter which test is used. Where this is not the case, Pillai’s criterion
may be the most appropriate. The univariate tests are for the two transformed
variables, T2 and T3, shown in Table 7.29.

It is important to note that T2 and T3 do not refer to the original variables
having those names, but to the two transformed variables. When comparing
three related scores, it is only necessary to test the statistical significance of the

Box 7.21 GLM—Repeated Measures Define Factor[s] dialog box
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Box 7.22 GLM—Repeated Measures subdialog box

differences between two of them (e.g. satis1-satis2 and satis2-satis3), since
the remaining difference (i.e. satis1-satis3) can be worked out if the other two
differences are known [(satis1-satis3)=(satis1-satis2)+(satis2 -satis3)]. The
number of unrelated comparisons is always one less than the number of
variables being compared. Unless requested otherwise, SPSS automatically
transforms the variables in a repeated-measures design so that the
comparisons are statistically independent. The nature of these transformations
can be determined by examining the transformation matrix. However, this is

Table 7.27 Repeated-measures means and standard
deviations for job satisfaction (Panel Study)
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Box 7.23 GLM—Repeated Measures: Options subdialog box

normally done only when the univariate tests are significant, which is not the
case here. The values for both the multivariate and univariate tests are not
significant. In other words, there is no difference in mean job satisfaction over
the three months.

The result of the averaged univariate test is presented in Table 7.30, which is
also not significant.
 
Table 7.28 Repeated-measures multivariate tests (Panel Study)

a. Exact statistic
b.

Design: Intercept
Within Subjects Design: MONTH
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As was the case for the one-way analysis of variance test, the F test tells us
only whether there is a significant difference between the three related scores but
does not inform us where this difference lies. If we had predicted a difference
between two scores, then we can determine if this prediction was confirmed by
conducting a related t test as described above. If we had not predicted a difference,
then we need to use a post hoc test, of which there are a number (Maxwell 1980).
Since these are not available on SPSS, they have to be calculated separately. If the
scores are significantly correlated, the Bonferroni inequality test is recommended,
whereas if they are not, the Tukey test is advocated.

The Bonferroni test is based on the related t test but modifies the significance
level to take account of the fact that more than one comparison is being made.
To calculate this, work out the total number of possible comparisons between
any two groups, divide the chosen significance level (which is usually 0.05) by
this number, and treat the result as the appropriate significance level for
comparing more than three groups. In the case of three groups, the total number
of possible comparisons is 3 which means the appropriate significance level is
0.017 (0.05/3).

The calculation for the Tukey test is more complicated (Stevens 1996). The
difference between any two means is compared against the value calculated by

Table 7.29 Repeated-measures univariate tests of significance for transformed variables
(Panel Study)

Table 7.30 Repeated-measures averaged test of significance (Panel Study)
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multiplying the square root of the repeated-measures within-cells mean-square
error term (divided by the number of cases) with the studentized range statistic,
a table of which can be found in Stevens (1996). If the difference between any
two means is greater than this value, then this difference is a significant one. The
within-cells mean-square error term is presented in the output in Table 7.30 and
is about 5.6 with sphericity assumed. The square root of this divided by the
number of cases is 0.68 ( ). The appropriate studentized range value with
3 groups and 22 degrees of freedom for the error term is 3.58. This multiplied
by 0.68 gives 2.43. If any two means differed by more than this, they would be
significant at the 0.05 level.

EXERCISES

1. Suppose you wanted to find out whether there had been a statistically
significant change in three types of books (classified as romance, crime and
science fiction) sold by two shops. What test would you use?

2. What would the null hypothesis be?

3. If the SPSS names were book for the type of book sold and shop for the two
shops, what would be the procedure for running this test?

4. Would you use a one- or a two-tailed level of significance?

5. If the probability level of the result of this test were 0.25, what would you
conclude about the number of books sold?

6. Would a finding with a probability level of 0.0001 mean that there was a
greater change in the number of books sold than one with a probability level
of 0.037?

7. If the value of this test were statistically significant, how would you determine
if there had been a significant change between any two cells, say romance
books, for the two shops?

8. Would you use a one- or a two-tailed level of significance to test the
expectation that the first shop should sell more romance books than the
second?

9. How would you determine a one-tailed level of significance from a two-tailed
one of, say, 0.084?

10. If you wanted to find out if more men than women reported having fallen in
love at first sight, would it be appropriate to test for this difference using a
binomial test in which the number of men and women saying that they had
had this experience was compared?
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11. What test would you use to determine if women reported having a greater
number of close friends than men?

12. When would you use the pooled rather than the separate variance estimates
in interpreting the results of a t test?

13. What test would you use if you wanted to find out if the average number of
books sold by the same ten shops had changed significantly in the three
months of October, November, and December?

 
 



Chapter 8

Bivariate analysis
Exploring relationships between two
variables

This chapter focuses on relationships between pairs of variables. Having
examined the distribution of values for particular variables through the use of
frequency tables, histograms, and associated statistics as discussed in Chapter 5,
a major strand in the analysis of a set of data is likely to be bivariate analysis—
how two variables are related to each other. The analyst is unlikely to be
satisfied with the examination of single variables alone, but will probably be
concerned to demonstrate whether variables are related. The investigation of
relationships is an important step in explanation and consequently contributes to
the building of theories about the nature of the phenomena in which we are
interested. The emphasis on relationships can be contrasted with the material
covered in the previous chapter, in which the ways in which cases or
participants may differ in respect to a variable were described. The topics
covered in the present chapter bear some resemblance to those examined in
Chapter 7, since the researcher in both contexts is interested in exploring
variance and its connections with other variables. Moreover, if we find that
members of different ethnic groups differ in regard to a variable, such as
income, this may be taken to indicate that there is a relationship between ethnic
group and income. Thus, as will be seen, there is no hard-and-fast distinction
between the exploration of differences and of relationships.

What does it mean to say that two variables are related? We say that there is
a relationship between two variables when the distribution of values for one
variable is associated with the distribution exhibited by another variable. In
other words, the variation exhibited by one variable is patterned in such a way
that its variance is not randomly distributed in relation to the other variable.
Examples of relationships that are frequently encountered are: middle class
individuals are more likely to vote Conservative than members of the working
class; infant mortality is higher among countries with a low per capita income
than those with a high per capita income; work alienation is greater in routine,
repetitive work than in varied work. In each case, a relationship between two
variables is indicated: between social class and voting behaviour; between the
infant mortality rate and one measure of a nation’s prosperity (per capita
income); and between work alienation and job characteristics. Each of these

164
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examples implies that the variation in one variable is patterned, rather than
randomly distributed, in relation to the other variable. Thus, in saying that there
is a relationship between social class and voting behaviour from the above
example, we are saying that people’s tendency to vote Conservative is not
randomly distributed across categories of social class. Middle class individuals
are more likely to vote for this party; if there was no relationship we would not
be able to detect such a tendency since there would be no evidence that the
middle and working classes differed in their propensity to vote Conservative.

CROSSTABULATION

In order to provide some more flesh to these ideas the idea of crosstabulation
will be introduced in conjunction with an example. Crosstabulation is one of the
simplest and most frequently used ways of demonstrating the presence or
absence of a relationship. To illustrate its use, consider the hypothetical data on
thirty individuals that are presented in Table 8.1. We have data on two variables:
whether each person exhibits job satisfaction and whether they have been absent
from work in the past six months. For ease of presentation, each variable can
assume either of two values—yes or no. In order to examine the relationship
between the two variables, individuals will be allocated to one of the four
possible combinations that the two variables in conjunction can assume. Table
8.2 presents these four possible combinations, along with the frequency of their
occurrence (as indicated from the data in Table 8.1). This procedure is very
similar to that associated with frequency tables (see Chapter 5). We are trying to
summarize and reduce the amount of information with which we are confronted
to make it readable and analyzable. Detecting a pattern in the relationship
between two variables as in Table 8.1 is fairly easy when there are only thirty
participants and the variables are dichotomous; with larger data sets and more
complex variables the task of seeing patterns without the employment of
techniques for examining relationships would be difficult and probably lead to
misleading conclusions.

The crosstabulation of the two variables is presented in Table 8.3. This kind
of table is often referred to as a contingency table. Since there are four possible
combinations of the two variables, the table requires four cells, in which the
frequencies listed in Table 8.2 are placed. The following additional
information is also presented. First, the figures to the right of the table are
called the row marginals and those at the bottom of the table are the column
marginals. These two items of information help us to interpret frequencies in
the cells. Also, if the frequencies for each of the two variables have not been
presented previously in a report or publication, the row and column marginals
provide this information. Second, a percentage in each cell is presented. This
allows any patterning to be easily detectable, a facility that becomes especially
helpful and important when tables with large numbers of cells are being
examined. The percentages presented in Table 8.3 are column percentages, that
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is, the frequency in each cell is treated as a percentage of the column marginal
for that cell. Thus, for cell 1 the frequency is 4 and the column marginal is 14;
the column percentage is ×100, i.e. 28.6 (rounded up to 29%).

What then does the contingency table show? Table 8.3 suggests that there
is a relationship between job satisfaction and absence. People who express job
satisfaction tend not to have been absent from work (cell 3), since the majority
(71 per cent) of the fourteen individuals who express satisfaction have not

Table 8.2 Four possible combinations

Table 8.1 Data for thirty individuals on job satisfaction and absenteeism
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been absent; on the other hand, of the sixteen people who are not satisfied, a
majority of 69 per cent have been absent from work (cell 2). Thus, a relationship
is implied; satisfied individuals are considerably less likely to be absent from
work than those who are not satisfied.

In saying that a relationship exists between job satisfaction and absence, we
are not suggesting that the relationship is perfect; some satisfied individuals
are absent from work (cell 1) and some who are not satisfied have not been
absent (cell 4). A relationship does not imply a perfect correspondence
between the two variables. Such relationships are not specific to the social
sciences—everyone has heard of the relationship between lung cancer and
smoking, but no one believes that it implies that everyone who smokes will
contract lung cancer or that lung cancer only afflicts those who smoke. If there
had been a perfect relationship between satisfaction and absence, the
contingency table presented in Table 8.4a would be in evidence; if there was no
relationship, the crosstabulation in Table 8.4b would be expected. In the case of
Table 8.4a, all individuals who express satisfaction would be in the ‘No’
category, and all who are not satisfied would be in the absence category. With
Table 8.4b, those who are not satisfied are equally likely to have been absent as
not absent.

As noted above, the percentages in Tables 8.2 to 8.4 are column percentages.
Another kind of percentage that might have been preferred is a row percentage.
With this calculation, the frequency in each cell is calculated in terms of the row
totals, so that the percentage for cell 1 would be ×100, i.e. 27%. The row
percentages for cells 2, 3 and 4 respectively would be 73%, 67% and 33%. In
taking row percentages, we would be emphasizing a different aspect of the
table—for example, the percentage of those who have been absent who are
satisfied (27% in cell 1) and the percentage who are not satisfied with their jobs
(73% in cell 2). The question of whether to use row or column percentages in
part depends on what aspects of the data you want to highlight. It is sometimes
suggested that the decision depends on whether the independent variable is

Table 8.3 The relationship between job satisfaction and absenteeism
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across the top or along the side of the table: if the former, column percentages
should be used; if the latter, row percentages should be employed. Typically, the
independent variable will go across the table, in which case column percentages
should be used. However, this suggestion implies that there is a straightforward
means of identifying the independent and dependent variables, but this is not
always the case and great caution should be exercised in making such an
inference for reasons that will be explored below. It may appear that job
satisfaction is the independent and absence the dependent variable, but it is
hazardous to make such an attribution.

SPSS can produce tables without percentages, though such tables are
unlikely to be very helpful, and can produce output with either row or column
percentages or both.

Crosstabulation with SPSS

Crosstabulations can easily be created with SPSS. Let us turn now to the Job
Survey data. Imagine that we want to examine the relationship between skill
and gender and that we want the following information in the table: counts (i.e.
the frequency for each cell); the row percentages; the column percentages; and
a chi-square test. This last piece of information will be dealt with in detail
below. Let us also say that we want the dependent variable, skill, to go down the
table and the independent variable, gender, to go across. To produce such
output (see Table 8.5), the following sequence should be followed:

Table 8.4 Two types of relationship
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�Statistics �Summarize �Crosstabs…[opens Crosstabs dialog box
shown in Box 8.1]
�skill ������button [puts skill in Row[s]: box] �gender ������button [puts
gender in Column[s]: box] �Statistics…[opens Crosstabs: Statistics
subdialog box shown in Box 8.2]
�Chi-square �Continue [closes Crosstabs: Statistics subdialog box]
�Cells…[opens Crosstabs: Cell Display subdialog box shown in
Box 8.3]
[ensure Observed in the Counts box has been selected. Under Percentages
ensure Row and Column have been selected.] �Continue
�OK

 
If only column percentages were required, you need click only at the appro-
priate point. In fact, it is likely that only column percentages would be used
since gender has been identified as the independent variable and goes across the
table; the row percentages are requested and presented here for illustrative
purposes. Table 8.5 provides the output deriving from these.

Box 8.1 Crosstabs dialog box
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Box 8.2 Crosstabs: Statistics subdialog box

Box 8.3 Crosstabs: Cell Display subdialog box
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CROSSTABULATION AND STATISTICAL
SIGNIFICANCE:THE CHI-SQUARE (c2) TEST

As the discussion of statistical significance in Chapter 6 implies, a problem that
is likely to be of considerable concern is the question of whether there really is
a relationship between the two variables or whether the relationship has arisen
by chance, for example as a result of sampling error having engendered an
idiosyncratic sample. If the latter were the case, concluding that there is a
relationship would mean that an erroneous inference was being made: if we find
a relationship between two variables from an idiosyncratic sample, we would
infer a relationship even though the two variables are independent (i.e. not
related) in the population from which the sample was taken. Even though the
sample may have been selected randomly, sampling error may have engendered

Table 8.5 Contingency table: skill by gender (SPSS output)

a. 0 cells (.0%) have expected count less than 5. The
minimum expected count is 6.20.
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an idiosyncratic sample, in which case the findings cannot be generalized to the
population from which the sample was selected. What we need to know is the
probability that there is a relationship between the two variables in the
population from which a random sample was derived. In order to establish this
probability, the chi-square (c2) test is widely used in conjunction with
contingency tables. This is a test of statistical significance, meaning that it
allows the researcher to ascertain the probability that the observed relationship
between two variables may have arisen by chance. In the case of Table 8.3, it
might be that there is no relationship between job satisfaction and absence in the
company as a whole, and that the relationship observed in our sample is a
product of sampling error (i.e. the sample is in fact unrepresentative).

The starting point for the administration of a chi-square test, as with tests of
statistical significance in general, is a null hypothesis of no relationship between
the two variables being examined. In seeking to discern whether a relationship
exists between two variables in the population from which a random sample was
selected, the null hypothesis would need to be rejected. If the null hypothesis is
confirmed, the proposition that there is a relationship must be rejected. The chi-
square statistic is then calculated. This statistic is calculated by comparing the
observed frequencies in each cell in a contingency table with those that would
occur if there were no relationship between the two variables. These are the
frequencies that would occur if the values associated with each of the two
variables were randomly distributed in relation to each other. In other words, the
chi-square test entails a comparison of actual frequencies with those which
would be expected to occur on the basis of chance alone (often referred to as the
expected frequencies). The greater the difference between the observed and the
expected frequencies, the larger the ensuing chi-square value will be; if the
observed frequencies are very close to the expected frequencies, a small value is
likely to occur.

The next step is for the researcher to decide what significance level to accept.
This means that the researcher must decide what is an acceptable risk that the
null hypothesis may be incorrectly rejected (i.e. a Type I error). The null
hypothesis would be incorrectly rejected if, for example, there was in fact no
relationship between job satisfaction and absence in the population, but our
sample data (see Table 8.3) suggested that there was such a relationship. The
significance level relates to the probability that we might be making such a false
inference. If we say that the computed chi-square value is significant at the 0.05
level of statistical significance, we are saying that we would expect that a
maximum of 5 in every 100 possible randomly-selected samples that could be
drawn from a population might appear to yield a relationship between two
variables when in fact there is no relationship between them in that population.
In other words, there is a 1 in 20 chance that we are rejecting the null hypothesis
of no relationship when we should in fact be confirming it. If we set a more
stringent qualification for rejection, the 0.01 level of significance, we are saying
that we are only prepared to accept a chi-square value that implies a maximum
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of 1 sample in every 100 showing a relationship where none exists in the
population. The probability estimate here is important—the probability of your
having a deviant sample (i.e. one suggesting a relationship where none exists in
the population) is greater if the 0.05 level is preferred to the 0.01 level. With the
former, there is a 1 in 20 chance, but with the latter a 1 in 100 chance, that the
null hypothesis will be erroneously rejected. An even more stringent test is to
take the 0.001 level which implies that a maximum of 1 in 1000 samples might
constitute a deviant sample. These three significance levels—0.05, 0.01,
0.001—are the ones most frequently encountered in reports of research results.

The calculated chi-square value must therefore be related to a significance
level, but how is this done? It is not the case that a larger chi-square value
implies a higher significance level. For one thing, the larger a table is, i.e. the
more cells it has, the larger a chi-square value is likely to be. This is because the
value is computed by taking the difference between the observed and the
expected frequencies for each cell in a contingency table and then adding all the
differences. It would hardly be surprising if a contingency table comprising four
cells exhibited a lower chi-square value than one with twenty cells. This would
be a ridiculous state of affairs, since larger tables would always be more likely
to yield statistically significant results than smaller ones. In order to relate the
chi-square value to the significance level it is necessary to establish the number
of degrees of freedom associated with a crosstabulation. This is calculated as
follows:

(number of columns-1)(number of rows-1)
 

In Table 8.3, there are two columns and two rows (excluding the column and
row marginals which are of no importance in calculating the degrees of
freedom), implying that there is one degree of freedom, i.e. (2–1)(2–1). In
addition to calculating the chi-square value, SPSS will calculate the degrees of
freedom associated with a crosstabulation. In order to generate such output with
SPSS, simply click on the Statistics…button in the Crosstabs dialog box (Box
8.1) and in the Crosstabs: Statistics subdialog box (Box 8.2) click on Chi-
square, as suggested on page 169.

Table 8.5 provides the SPSS output for skill by gender. SPSS generates three
types of chi-square value. The first of these—Pearson chi-square—is the statistic
that is discussed in the text. The chi-square value is 4.101 with three degrees of
freedom and the significance level is 0.25. This last figure suggests that there is
unlikely to be a relationship between the two variables: although, for example,
men (1) are more likely than women (2) to work on higher skill jobs (4), the
respective column percentages being 30.8 % and 16.1%, the chi-square value is
not sufficiently large for us to be confident that the relationship could not have
arisen by chance. There is a 25 per cent or 1 in 4 possibility that there is no
relationship between the two variables in the population. In other words, the null
hypothesis of independence between the two variables is confirmed. By contrast,
the contingency table presented in Table 8.3 generates a chi-square value of 4.82
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which is significant at the 0.05 level, implying that we could have confidence in
a relationship between the two variables in the population.

If desired, SPSS can also provide the expected values from which the
calculation of a chi-square value is derived. This additional information can be
useful in order to provide a stronger ‘feel’ for the degree to which the observed
frequencies (the counts) differ from the distribution that would occur if chance
alone were operating. This additional information can aid the understanding and
interpretation of a relationship but would not normally be used in tables
presented to readers. To generate expected frequencies, simply click on
Expected in the Crosstabs: Cell Display subdialog box (see Box 8.3), as well
as on Observed.

When presenting a contingency table and its associated chi-square test for a
report or publication, some attention is needed to its appearance and to what is
conveyed. Table 8.6 presents a ‘cleaned’ table of the output provided in Table
8.5. A number of points should be noted. First, only column marginals have
been presented. Second, observed and expected frequencies are not included.
Some writers prefer to include observed frequencies as well as column
percentages, but if as in Table 8.6 the column marginals are included, observed
frequencies can be omitted. Percentages have been rounded. Strictly speaking,
this should only be done for large samples (e.g. in excess of 200), but rounding
is often undertaken on smaller samples since it simplifies the understanding of
relationships. The chi-square value is inserted at the bottom with the associated
level of significance. In this case, the value is not significant at the 0.05 level,
the usual minimum level for rejecting the null hypothesis. This is often
indicated by NS (i.e. non-significant) and an indication of the significance level
employed. Thus, p>0.05 means that the chi-square value is below that necessary
for achieving the 0.05 level, meaning that there is more than a 5% chance that
there is no relationship in the population. If the chi-square value exceeds that
necessary for achieving the 0.05 level, one would write p<0.05.

A number of points about chi-square should be registered in order to facili-
tate an understanding of its strengths and limitations, as well as some further
points about its operation. First, chi-square is not a strong statistic in that it does
not convey information about the strength of a relationship. This notion of

Table 8.6 Rated skill by gender (Job-Survey data)
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strength of relationship will be examined in greater detail below when
correlation is examined. By strength is meant that a large chi-square value and
a correspondingly strong significance level (e.g. p<0.001) cannot be taken to
mean a closer relationship between two variables than when chi-square is
considerably smaller but moderately significant (e.g. p<0.05). What it is telling
us is how confident we can be that there is a relationship between two variables.
Second, the combination of a contingency table and chi-square is most likely to
occur when either both variables are nominal (categorical) or when one is
nominal and the other is ordinal. When both variables are ordinal or interval/
ratio other approaches to the elucidation of relationships, such as correlation
which allows strength of relationships to be examined and which therefore
conveys more information, are likely to be preferred. When one variable is
nominal and the other interval, such as the relationship between voting
preference and age, the latter variable will need to be ‘collapsed’ into ordinal
groupings (i.e. 20–29, 30–39, 40–49, etc.) in order to allow a contingency table
and its associated chi-square value to be provided.

Third, chi-square should be adapted for use in relation to a 2×2 table, such
as Table 8.3. A different formula is employed, using something called ‘Yates’
Correction for Continuity’. It is not necessary to go into the technical reasons
for this correction, save to say that some writers take the view that the
conventional formula results in an overestimate of the chi-square value when
applied to a 2×2 table. When SPSS is used to calculate the chi-square value
for such a table, two sets of computations are provided—one with and one
before Yates’s correction. Normally, the results of the former should be used.
If Yates’ correction has been used in the computation of the chi-square
statistic, this should be clearly stated when the data are presented for
publication.

Some writers suggest that the phi coefficient (?) can be preferable to chi-
square as a test of association between two dichotomous variables. This statistic,
which is similar to the correlation coefficient (see below) in that it varies
between 0 and 1 to provide an indication of the strength of a relationship, can
easily be generated in SPSS by clicking at the appropriate point in the
Crosstabs: Statistics subdialog box (see Box 8.2). The statistical significance
of the value of phi is given in the SPSS output.

Fourth, chi-square can be unreliable if expected cell frequencies are less than
five, although like Yates’s correction for 2×2 tables, this is a source of some
controversy. SPSS prints the number and percentage of such cells.

CORRELATION

The idea of correlation is one of the most important and basic in the elaboration
of bivariate relationships. Unlike chi-square, measures of correlation indicate
both the strength and the direction of the relationship between a pair of
variables. Two types of measure can be distinguished: measures of linear
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correlation using interval variables and measures of rank correlation using
ordinal variables. While these two types of measure of correlation share some
common properties, they also differ in some important respects which will be
examined after the elucidation of measures of linear correlation.

Linear correlation: relationships between interval
variables

Correlation entails the provision of a yardstick whereby the intensity or strength
of a relationship can be gauged. To provide such estimates, correlation
coefficients are calculated. These provide succinct assessments of the closeness
of a relationship among pairs of variables. Their widespread use in the social
sciences has meant that the results of tests of correlation have become easy to
recognize and interpret. When variables are interval/ratio, by far the most
common measure of correlation is Pearson’s Product Moment Correlation
Coefficient, often referred to as Pearson’s r. This measure of correlation
presumes that interval variables are being used, so that even ordinal variables
are not supposed to be employed, although this is a matter of some debate (e.g.
O’Brien 1979).

In order to illustrate some of the fundamental features of correlation, scatter
diagrams (often called ‘scattergrams’) will be employed. A scatter diagram
plots each individual case on a graph, thereby representing for each case the
points at which the two variables intersect. Thus, if we are examining the
relationship between income and political liberalism in the imaginary data
presented in Table 8.7, each point on the scatter diagram represents each
respondent’s position in relation to each of these two variables. Let us say that
political liberalism is measured by a scale of five statements to which
individuals have to indicate their degree of agreement on a five-point array
(‘Strongly Agree’ to ‘Strongly Disagree’). The maximum score is 25, the
minimum 5. Table 8.7 presents data on eighteen individuals for each of the two
variables. The term ‘cases’ is employed in the table, rather than participants, as
a reminder that the objects to which data may refer can be entities such as firms,
schools, cities, and the like. In Figure 8.1, the data on income and political
liberalism from Table 8.7 are plotted to form a scatter diagram. Thus, case
number 1, which has an income of £9,000 and a liberalism score of 18, is
positioned at the intersection of these two values on the graph. This case has
been encircled to allow it to stand out.

Initially, the nature of the relationship between two variables can be focused
upon. It should be apparent that the pattern of the points moves downwards
from left to right. This pattern implies a negative relationship, meaning that as
one variable increases the other decreases: higher incomes are associated with
lower levels of political liberalism; lower incomes with higher levels of
liberalism. In Figure 8.2 a different kind of relationship between two variables
is exhibited. Here, there is a positive relationship, with higher values on one
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Table 8.7 Data on age, income and political liberalism

Figure 8.1 Scatter diagram: political liberalism by income (SPSS output)
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variable (income) being associated with higher values on the other (age). These
data also derive from Table 8.7. In Figure 8.2, case number 1 is again circled.
Notice how in neither case is the relationship between the two variables a perfect
one. If there was a perfect linear relationship, all of the points in the scatter
diagram would be on a straight line (see Figure 8.3), a situation which almost
never occurs in the social sciences. Instead, we tend to have, as in Figures 8.1 and
8.2, a certain amount of scatter, though a pattern is often visible, such as the
negative and positive relationships each figure respectively exhibits. If there is a
large amount of scatter, so that no patterning is visible, we can say that there is
no or virtually no relationship between two variables (see Figure 8.4).

In addition to positive and negative relationships we sometimes find
curvilinear relationships, in which the shape of the relationship between two
variables is not straight, but curves at one or more points. Figure 8.5 provides
three different types of curvilinear relationship. The relationship between
organizational size and organizational properties, like the amount of
specialization, often takes a form similar to diagram (c) in Figure 8.5 (Child
1973). When patterns similar to those exhibited in Figure 8.5 are found, the
relationship is non-linear—that is, it is not straight—and it is not appropriate to
employ a measure of linear correlation like Pearson’s r. When scatter diagrams are
similar to the patterns depicted in parts (b) and (c) of Figure 8.5, researchers often
transform the independent variable into a logarithmic scale, which will usually
engender a linear relationship and hence will allow the employment of Pearson’s
r. Here we see an important reason for investigating scatter diagrams before

Figure 8.2 Scatter diagram: income by age (SPSS output)
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computing r—if there is a non-linear relationship the computed estimate of
correlation will be meaningless, but unless a scatter diagram is checked it is not
possible to determine whether the relationship is not linear.

Scatter diagrams allow three aspects of a relationship to be discerned:
whether it is linear; the direction of the relationship (i.e. whether positive or
negative); and the strength of the relationship. The amount of scatter is
indicative of the strength of the relationship. Compare the pairs of positive and
negative relationships in Figures 8.6 and 8.7 respectively. In each case the right-
hand diagram exhibits more scatter than the left-hand diagram. The left-hand
diagram exhibits the stronger relationship: the greater the scatter (with the
points on the graph departing more and more from being positioned on a
straight line as in Figure 8.3), the weaker the relationship.

Figure 8.3 A perfect relationship Figure 8.4 No relationship (or virtually
no relationship)

Figure 8.5 Three curvilinear relationships
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Scatter diagrams are useful aids to the understanding of correlation.
Pearson’s r allows the strength and direction of linear relationships between
variables to be gauged. Pearson’s r varies between -1 and +1. A relationship of
-1 or +1 would indicate a perfect relationship, negative or positive respectively,
between two variables. Thus, Figure 8.3 would denote a perfect positive
relationship of +1. The complete absence of a relationship would engender a
computed r of zero. The closer r is to 1 (whether positive or negative), the
stronger the relationship between two variables. The nearer r is to zero (and
hence the further it is from +1 or -1), the weaker the relationship. These ideas

Figure 8.6 Two positive relationships

Figure 8.7 Two negative relationships
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are expressed in Figure 8.8. If r is 0.82, this would indicate a strong positive
relationship between two variables, whereas 0.24 would denote a weak positive
relationship. Similarly, -0.79 and -0.31 would be indicative of strong and weak
negative relationships respectively. In Figures 8.6 and 8.7, the left-hand
diagrams would be indicative of larger computed rs than those on the right.

What is a large correlation? Cohen and Holliday (1982) suggest the
following: 0.19 and below is very low; 0.20 to 0.39 is low; 0.40 to 0.69 is
modest; 0.70 to 0.89 is high; and 0.90 to 1 is very high. However, these are rules
of thumb and should not be regarded as definitive indications, since there are
hardly any guidelines for interpretation over which there is substantial
consensus.

Further, caution is required when comparing computed coefficients. We can
certainly say that an r of -0.60 is larger than one of -0.30, but we cannot say
that the relationship is twice as strong. In order to see why not, a useful aid to
the interpretation of r will be introduced—the coefficient of determination (r2).
This is simply the square of r multiplied by 100. It provides us with an
indication of how far variation in one variable is accounted for by the other.
Thus, if r=-0.6, then r2=36 per cent. This means that 36 per cent of the variance
in one variable is due to the other. When r=-0.3, then r2 will be 9 per cent.
Thus, although an r of -0.6 is twice as large as one of -0.3, it cannot indicate
that the former is twice as strong as the latter, because four times more variance
is being accounted for by an r of -0.6 than one of -0.3. Thinking about the
coefficient of determination can have a salutary effect on one’s interpretation
of r. For example, when correlating two variables, x and y, an r of 0.7 sounds
quite high, but it would mean that less than half of the variance in y can be
attributed to x (i.e. 49 per cent). In other words, 51 per cent of the variance in
y is due to variables other than x.

A word of caution is relevant at this point. In saying that 49 per cent of the
variation in y is attributable to x, we must recognize that this also means that 49
per cent of the variation in x is due to y. Correlation is not the same as cause.
We cannot determine from an estimate of correlation that one variable causes
the other, since correlation provides estimates of covariance, i.e. that two vari-
ables are related. We may find a large correlation of 0.8 between job satisfac-
tion and organizational commitment, but does this mean that 64 per cent of the
variation in job satisfaction can be attributed to commitment? This would sug-
gest that organizational commitment is substantially caused by job satisfaction.

Figure 8.8 The strength and direction of correlation coefficients
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But the reverse can also hold true: 64 per cent of the variation in organizational
commitment may be due to job satisfaction. It is not possible from a simple
correlation between these two variables to arbitrate between the two
possibilities. Indeed, as Chapter 10 will reveal, there may be reasons other than
not knowing which causes which for needing to be cautious about presuming
causality.

Another way of expressing these ideas is through Venn diagrams (see Figure
8.9). If we treat each circle as representing the amount of variance exhibited by
each of two variables, x and y, Figure 8.9 illustrates three conditions: in the top
diagram we have independence in which the two variables do not overlap, i.e. a
correlation of zero as represented by Figure 8.4 or in terms of a contingency
table by Table 8.4b; in the middle diagram there is a perfect relationship in
which the variance of x and y coincides perfectly, i.e. a correlation of 1 as
represented by Figure 8.3 or the contingency table in Table 8.4a; and the bottom
diagram which points to a less than perfect, though strong, relationship between
x and y, i.e. as represented by the left-hand diagrams in Figures 8.6 and 8.7.
Here only part of the two circles intersects, i.e. the shaded area, which
represents just over 42 per cent of the variance shared by the two variables; the

Figure 8.9 Types of relationship
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unshaded area of each circle denotes a sphere of variance for each variable that
is unrelated to the other variable.

It is possible to provide an indication of the statistical significance of r. This
is described in the next section. The way in which the significance of r is
calculated is strongly affected by the number of cases for which there are pairs
of data. For example, if you have approximately 500 cases, r only needs to be
0.088 or 0.115 to be significant at the 0.05 and 0.01 levels respectively. If you
have just eighteen cases (as in Table 8.7), r will need to be at least 0.468 or
0.590 respectively. Some investigators only provide information about the
significance of relationships. However, this is a grave error since what is and is
not significant is profoundly affected by the number of cases. What statistical
significance does tell us is the likelihood that a relationship of at least this size
could have arisen by chance. It is necessary to interpret both r and the
significance level when computing correlation coefficients. For example, a
correlation of 0.17 in connection with a random sample of 1,000 individuals
would be significant at the 0.001 level, but would indicate that this weak
relationship is unlikely to have arisen by chance and that we can be confident
that a relationship of at least this size holds in the population. Consider an
alternative scenario of a correlation of 0.43 based on a sample of 42. The
significance level would be 0.01, but it would be absurd to say that the former
correlation was more important than the latter simply because the correlation of
0.17 is more significant. The second coefficient is larger, though we have to be
somewhat more circumspect in this second case than in the first in inferring that
the relationship could not have arisen by chance. Thus the size of r and the
significance level must be considered in tandem. The test of statistical
significance tells us whether a correlation could have arisen by chance (i.e.
sampling error) or whether it is likely to exist in the population from which the
sample was selected. It tells us how likely it is that we might conclude from
sample data that there is a relationship between two variables when there is no
relationship between them in the population. Thus, if r=0.7 and p<0.01, there is
only 1 chance in 100 that we could have selected a sample that shows a
relationship when none exists in the population. We would almost certainly
conclude that the relationship is statistically significant. However, if r=0.7 and
p =0.1, there are 10 chances in 100 that we have selected a sample which shows
a relationship when none exists in the population. We would probably decide
that the risk of concluding that there is a relationship in the population is too
great and conclude that the relationship is non-significant.

Generating scatter diagrams and computing r
with SPSS

Taking the Job-Survey data, if you wanted to plot satis and routine, assuming
that the latter variable was to form the horizontal axis, the following sequence
would be used:
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�Graphs �Scatter…[opens Scatterplot dialog box shown in Box 8.4]
�Simple �Define [opens Simple Scatterplot subdialog box shown in
Box 8.5]
�satis ������button [puts satis in box Y Axis:] �routine ������button [puts
routine in box by X Axis:] �OK

Box 8.4 Scatterplot dialog box

Box 8.5 Simple Scatterplot subdialog box
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Examples of SPSS scatter diagram output can be found in Figures 8.1 and
8.2. The appearance of the points in the diagram can be varied by double-
clicking anywhere in the scatterplot. This brings up the SPSS Chart Editor.
Click on Format on the Chart Editor menu bar and then select Marker….
This will bring up a palette of possible forms for the points. Click on your
preferred choice and then click on Apply All. It is also possible to vary the size
of the points. Figures 8.1 and 8.2 illustrate two different types of marker. The
colour of the scatterplot points can be changed by clicking on Format on the
Chart Editor menu bar and then selecting Color….

In order to generate correlation coefficients for the variables routine,
autonom and satis, the following sequence should be followed:

�Statistics �Correlate �Bivariate…[opens Bivariate Correlations
dialog box shown in Box 8.6]
�autonom ������button �routine ������button �satis ������button [puts
autonom, routine and satis in Variables: box] �Pearson [if not already
selected] �One tailed [if preferred to Two-tailed] �OK

 
SPSS will delete missing cases on a pairwise basis, meaning that missing cases
will only be excluded for each pair of variables. With listwise deletion of
missing cases, the correlation coefficients will only be produced on those cases

Box 8.6 Bivariate Correlations dialog box
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for which data are all available for all three variables. If listwise deletion is
preferred, before clicking on OK:

�Options…[opens Bivariate Correlations: Options subdialog box]
�Exclude cases listwise �Continue [closes Bivariate Correlations:
Options subdialog box]
�OK

A matrix of correlation coefficients will be generated, as in Table 8.8. This table
includes both the levels of statistical significance achieved for each coefficient
and the number of cases. If pairwise deletion has been selected, the number of
cases may vary from pair to pair (as in Table 8.8), but if listwise deletion of
missing cases was selected, the numbers of cases would be the same. All
coefficients are quite large and all achieve a high level of statistical significance
at p<0.000 (which means p<0.0005).

Rank correlation: relationships between ordinal
variables

In order to employ Pearson’s r, variables must be interval and the relationship
must be linear. When variables are at the ordinal level, an alternative measure of
correlation can be used called rank correlation. Two prominent methods for
examining the relationship between pairs of ordinal variables are available—
Spearman’s rho (r) and Kendall’s tau (t)—the former probably being more
common in reports of research findings. The interpretation of the results of
either method is identical to Pearson’s r, in that the computed coefficient will
vary between -1 and +1. Thus, it provides information on the strength and
direction of relationships. Moreover, unlike Pearson’s r, rho and tau are non-
parametric methods, which means that they can be used in a wide variety of
contexts since they make fewer assumptions about variables. Obviously, the
formulae for the two methods of measuring correlation differ, but the areas of

Table 8.8 Matrix of Pearson product moment correlation coefficients (SPSS output)

**. Correlation is significant at the 0.01 level (2-tailed).
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divergence need not concern us here. Kendall’s tau usually produces slightly
smaller correlations, but since rho is more commonly used by researchers, it is
probably preferable to report this statistic unless there are obvious reasons for
thinking otherwise. One possible reason that is sometimes suggested for
preferring tau is that it deals better with tied ranks—for example, where two or
more people are at the same rank. Thus, if there seems to be quite a large
proportion of tied ranks, tau may be preferable.

Let us say that we want to correlate skill, prody and qual, each of which is
an ordinal measure. Even though these are ordinal variables, they have to be
rank ordered. SPSS allows both tau and rho to be computed. The procedure is
essentially identical to that used above for generating Pearson’s r, except that it
is necessary to select Kendall’s tau or Spearman’s rho or both. Thus the
sequence is:
 

�Statistics �Correlate �Bivariate…[opens Bivariate Correlations
dialog box shown in Box 8.6]
�qual ������button �prody ������button �skill ������button [puts qual,
prody and skill into Variables box] �Kendall’s tau-b [if not already
selected] or Spearman or both �One tailed [if preferred to Two-tailed]
�OK

It will also be necessary to decide whether to exclude missing cases on a listwise
or pairwise basis through the Options button. Table 8.9 shows the output for
Spearman’s rho only. All of the correlations reported in Table 8.9 are low, the
largest being the correlation between prody and skill (0.24 rounded up). This is
the only one of the three correlations that achieves statistical significance at
p<0.05. Thus, there is a tendency for better skilled workers to be more
productive.

Although rank correlation methods are more flexible than Pearson’s r, the
latter tends to be preferred because interval/ratio variables comprise more

Table 8.9 Matrix of Spearman’s rho correlation coefficients
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information than ordinal ones. One of the reasons for the widespread use in the
social sciences of questionnaire items which are built up into scales or indices
(and which are then treated as interval variables) is probably that stronger
approaches to the investigation of relationships like Pearson’s r (and
regression—see below) can be employed.

OTHER APPROACHES TO BIVARIATE
RELATIONSHIPS

Up to now, the approach to the examination of relationships has been
undertaken within a framework within which the nature of the variables has
been the most important factor: crosstabulation and chi-square are most likely to
occur in conjunction with nominal variables; Pearson’s r presumes the use of
interval variables; and when examining pairs of ordinal variables, rho or tau
should be employed. However, what if, as can easily occur in the social
sciences, pairs of variables are of different types, for example, nominal plus
ordinal or ordinal plus interval? There are methods for the elucidation of
relationships which can deal with such eventualities. Freeman (1965), for
example, catalogues a vast array of methods that can be used in such
circumstances. There are problems with many of these methods. First, they are
unfamiliar to most readers who would therefore experience great difficulty in
understanding and interpreting the results of calculations. Second, while
particular statistical methods should not be followed fetishistically, the notion of
learning a new statistical method each time a particular combination of
circumstances arises is also not ideal. Third, for many unusual methods
software is not available, even within a wide-ranging package like SPSS.

One rule of thumb that can be recommended is to move downwards in
measurement level when confronted with a pair of different variables. Thus, if
you have an ordinal and an interval variable, a method of rank correlation could
be used. If you have an ordinal and a nominal variable, you should use
crosstabulation and chi-square. This may mean collapsing ranks into groups (for
example, 1–5, 6–10, 11–15, and so on) and assigning ranks to the groupings (for
example, 1–5=1, 6–10=2, 11–15=3, and so on), using the Recode procedure. If
you have a nominal and an interval variable, again the combination of a
contingency table and chi-square is likely to be used. As suggested in the
discussion of crosstabulation, the interval variable will need to be collapsed into
groups. The chief source of concern with collapsing values of an ordinal or
interval variable is that the choice of cut-off points is bound to be arbitrary and
will have a direct impact on the results obtained. Accordingly, it may be better to
use more than one method of grouping or to employ a fairly systematic
procedure like quartiles as a means of collapsing cases into four groups.

When pairs of variables are dichotomous, the phi coefficient should be given
serious consideration. Its interpretation is the same as Pearson’s r, in that it
varies between 0 and +1. (A description of a test of statistical significance for
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phi was provided in the section on crosstabulation.) Phi represents something of
a puzzle. Some textbooks indicate that phi can take a positive or negative value,
which means that it can measure both the strength and direction of relationships
among dichotomous variables. However, the phi coefficient that is generated by
SPSS can only assume a positive value. The reason for this apparent
inconsistency lies in the different formulae that are employed.

Statistics textbooks often present a host of methods for examining
relationships which are rarely seen in reports of research. It is not proposed to
provide such a catalogue here, but two methods are particularly worthy of
attention. First, in order to provide a measure of the strength of the relationship
between two variables from a contingency table, Cramer’s V can be
recommended. This test, whose calculation in large part derives from chi-square,
provides results which vary between 0 and +1. Moreover, in a 2×2 table, phi and
Cramer’s V will yield the same result. Table 8.5 provides the result of computing
Cramer’s V for skill by gender. The coefficient is 0.24 (rounded down),
suggesting a weak relationship. Phi can be generated in SPSS through the
Crosstabs…procedure by ensuring that in the Crosstabs: Statistics subdialog
box (see Box 8.2), Phi and Cramer’s V has been selected. This will provide both
phi and Cramer’s V. The former should be used for 2×2 tables; Cramer’s V for
larger tables in which the number of both rows and columns is greater than 2.

Second, when the researcher is confronted with an interval dependent
variable and an independent variable that is either nominal or ordinal, the eta
coefficient warrants consideration. Like Cramer’s V, it can only vary between 0
and +1 and can be computed through the Crosstabs procedure by ensuring that
in the Crosstabs: Statistics subdialog box (see Box 8.2), Phi and Cramer’s V
has been activated (i.e. has a tick by it). A common derivation of eta is eta-
squared, which is similar to r2 in its underlying interpretation. Thus, eta-squared
refers to the amount of variation in the dependent (i.e. interval) variable that is
accounted for by the independent (i.e. nominal or ordinal) variable. Both eta
and eta-squared are also produced by SPSS when an analysis of variance is
requested in association with the Means…procedure, which is described below.
Eta can be regarded as a useful test which provides a measure of strength of
relationship in the contexts cited above. However, because it forces the
researcher to commit him- or herself to which variable is independent, eta may
be sensible to avoid when such decisions are particularly difficult.

The SPSS Means procedure provides an interesting way of analyzing pairs
of variables when the dependent variable is interval and the independent
variable is either nominal, ordinal or dichotomous. This procedure is very
similar to Crosstabs, except that with Means the dependent variable is broken
down in terms of the independent variable, and the mean and standard deviation
of the dependent variable for each subgroup of the independent variable are
computed. Thus, if we knew the incomes and ethnic group membership for a
sample of individuals, we could examine the mean income of each of the ethnic
groups identified, as well as the standard deviations for each subgroup mean.
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This allows the impact of the independent variable on the dependent variable to
be examined. Earlier it was suggested that if we have an interval and an ordinal
variable, we should examine the relationship between them using rank
correlation. However, if the ordinal variable has relatively few categories and
the interval variable has many values, it is likely to be more appropriate to use
Means. If rank correlation is used in such a context, the contrast between the
two variables is considerable and makes the ensuing statistic difficult to
interpret.

Let us say that we wish to look at the relationship between satis and skill
(which only has four categories) in the Job-Survey data. The following
sequence should be followed:
 

�Statistics �Compare Means �Means…[opens Means dialog box
shown in Box 8.7]
�satis ������button by Dependent List: [puts satis in Dependent List: box]
�skill ������button by Independent List: [puts skill in Independent List:
box] �Options…[opens Means: Options subdialog box shown in Box
8.8]
[ensure Mean, Number of Cases and Standard Deviation appear in the
Cell Statistics: box] �Anova table and eta in the Statistics for First
Layer box �Continue [closes Means: Options subdialog box]
�OK

An analysis of variance table will be produced along with the F ratio (which
provides a test of statistical significance), and eta and eta-squared. Table
8.10 provides SPSS output from this set of commands. As this output shows,
job satisfaction varies by skill (with lower satis means for lower skill levels)

Box 8.7 Means dialog box
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Box 8.8 Means: Options subdialog box

and the F ratio of 6.782 is significant at the 0.0005 level, suggesting a strong
probability of a relationship in the population. The eta-squared suggests that
about one-quarter of the variance of satis can be attributed to skill. Thus,
Means can be considered a useful tool for examining relationships when there
is an interval dependent variable and a nominal, dichotomous, or short ordinal
variable. However, it only makes sense if the interval variable can be
unambiguously recognized as the dependent variable.

REGRESSION

Regression has become one of the most widely used techniques in the analysis
of data in the social sciences. It is closely connected to Pearson’s r, as will
become apparent at a number of points. Indeed, it shares many of the same
assumptions as r, such as that relationships between variables are linear and that
variables are interval. In this section, the use of regression to explore
relationships between pairs of variables will be examined. It should become
apparent that regression is a powerful tool for summarizing the nature of the
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relationship between variables and for making predictions of likely values of the
dependent variable.

At this point, it is worth returning to the scatter diagrams encountered in
Figures 8.1 and 8.2. Each departs a good deal from Figure 8.3 in which all of the
points are on a straight line, since the points in Figures 8.1 and 8.2 are more
scattered. The idea of regression is to summarize the relationship between two
variables by producing a line which fits the data closely. This line is called the
line of best fit. Only one line will minimize the deviations of all of the dots in a
scatter diagram from the line. Some points will appear above the line, some
below and a small proportion may actually be on the line. Because only one line
can meet the criterion of line of best fit, it is unlikely that it can accurately be
drawn by visual inspection. This is where regression comes in. Regression
procedures allow the precise line of best fit to be computed. Once we know the
line of best fit, we can make predictions about likely values of the dependent
variable, for particular values of the independent variable.

In order to understand how the line of best fit operates, it is necessary to get
to grips with the simple equation that governs its operation and how we make
predictions from it. The equation is

y=a+bx+e

Table 8.10 Means output for satis by skill
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In this equation, y and x are the dependent and independent variables
respectively. The two elements—a and b—refer to aspects of the line itself.
First, a is known as the intercept, which is the point at which the line cuts the
vertical axis. Second, b is the slope of the line of best fit and is usually referred
to as the regression coefficient. By the ‘slope’ is meant the rate at which
changes in values of the independent variable (x) affect values of the dependent
variable (y). In order to predict y for a given value of x, it is necessary to:
 
1 multiply the value of x by the regression coefficient, b; and
2 add this calculation to the intercept, a.
 
Finally, e is referred to as an error term which points to the fact that a proportion
of the variance in the dependent variable, y, is unexplained by the regression
equation. In order to simplify the following explanation of regression, for the
purposes of making predictions the error term is ignored and so will not be
referred to below.

Consider the following example. A researcher may want to know whether
managers who put in extra hours after the normal working day tend to get on
better in the organization than others. The researcher finds out the average
amount of time a group of twenty new managers in a firm spend working on
problems after normal working hours. Two years later the managers are re-
examined to find out their annual salaries. Individuals’ salaries are employed as
an indicator of progress, since incomes often reflect how well a person is getting
on in a firm. Moreover, for these managers, extra hours of work are not
rewarded by overtime payments, so salaries are a real indication of progress. Let
us say that the regression equation which is derived from the analysis is:

y=7500+500x
 

The line of best fit is drawn in Figure 8.10.
The intercept, a, is 7500, i.e. £7500; the regression coefficient, b, is 500, i.e.

£500. The latter means that each extra hour worked produces an extra £500 on
a manager’s annual salary. We can calculate the likely annual salary of someone
who puts in an extra 7 hours per week as follows:
 

y=7500+(500)(7)
 

which becomes:
 

y=7500+3500
 

which becomes:
 

y=11000 (i.e. £11,000).
 

For someone who works an extra 8 hours per week, the likely salary will be
£11,500, i.e. 7500+(500)(8). If a person does not put in any extra work, the
salary is likely to be £7,500, i.e. 7500+(500)(0). Thus, through regression,
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Figure 8.10 A line of best fit

 
we are able to show how y changes for each additional increment of x (because
the regression coefficient expresses how much more of y you get for each extra
increment of x) and to predict the likely value of y for a given value of x. When
a relationship is negative, the regression equation for the line of best fit will take
the form:
 

y=a-bx (see Figure 8.11).

Thus, if a regression equation was y=50-2x, each extra increment of x produces
a decrease in y. If we wanted to know the likely value of y when x=12, we would
substitute as follows:

y=50-2x
y=50-(2)(12)
y=50-24
y=26.

When a line of best fit shows a tendency to be vertical and to intersect with the
horizontal axis, the intercept, a, will have a minus value. This is because it will



Bivariate analysis: exploring relationships 195

cut the horizontal axis, and when extended to the vertical axis it will intercept it
at a negative point (see Figure 8.12). In this situation, the regression equation
will take the form:

y=-a+bx

Supposing the equation were y=-7+23x, if we wanted to know the likely value
of y when x=3, we would substitute as follows:

y=-7+23x
y=-7+(23)(3)
y=-7+69
y=69-7
y=62.

As suggested at the start of this section, correlation and regression are closely
connected. They make identical assumptions that variables are interval/ratio and
that relationships are linear. Further, r and r2 are often employed as indications
of how well the regression line fits the data. For example, if r=1, the line of
best fit would simply be drawn straight through all of the points (see Figure
8.13). Where points are more scattered, the line of best fit will provide a poorer
fit with the data. Accordingly, the more scatter there is in a scatter diagram, the
less accurate the prediction of likely y values will be. Thus, the closer r is to 1,
the less scatter there is and, therefore, the better the fit between the line of best
fit and the data. If the two scatter diagrams in Figures 8.6 and 8.7 are examined,
the line of best fit for the left-hand diagram in each case will constitute a
superior fit between data and line and will permit more accurate predictions.
This can be further illustrated by reference to Figure 8.14. If we take a particular

Figure 8.11 Regression: a negative
relationship

Figure 8.12 Regression: a negative intercept
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value of x, i.e. xn, then we can estimate the likely value of y (ŷn) from the
regression line. However, the corresponding y value for a particular case may be
yn, which is different from ŷn. In other words, the latter provides an estimate of
y which is likely not to be totally accurate. Clearly, the further the points are
from the line, the less accurate estimates are likely to be. Therefore, where r is
low, scatter will be greater and the regression equation will provide a less
accurate representation of the relationship between the two variables.

On the other hand, although correlation and regression are closely connected,
it should be remembered that they serve different purposes. Correlation is
concerned with the degrees of relationship between variables, and regression
with making predictions. But they can also be usefully used in conjunction,
since, unlike correlation, regression can express the character of relationships.
Compare the two scatter diagrams in Figure 8.15. The pattern of dots is identical
and each would reveal an identical level of correlation (say 0.75), but the slope
of the dots in (a) is much steeper than in (b). This difference would be revealed
in a larger regression coefficient for (a) and a larger intercept for (b).

The r2 value is often used as an indication of how well the model implied by
the regression equation fits the data. If we conceive of y, the dependent variable,
as exhibiting variance which the independent variable goes some of the way in
explaining, then we can say that r2 reflects the proportion of the variation in y
explained by x. Thus, if r2 equals 0.74, the model is providing an explanation of
74 per cent of the variance in y.

Although we have been talking about y as the dependent and x as the
independent variable, in many instances it makes just as much sense to treat x as
dependent and y as independent. If this is done, the regression equation will be
different. Two other words of caution should be registered. First, regression

Figure 8.13 Regression: a perfect
relationship

Figure 8.14 The accuracy of the line of best fit
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assumes that the dispersion of points in a scatter diagram is homoscedastic, or
where the pattern of scatter of the points about the line shows no clear pattern.
When the opposite is the case, and the pattern exhibits heteroscedasticity, where
the amount of scatter around the line of best fit varies markedly at different
points, the use of regression is questionable. An example of heteroscedasticity is
exhibited in Figure 8.16, which suggests that the amount of unexplained
variation exhibited by the model is greater at the upper reaches of x and y.
Homoscedasticity is also a precondition of the use of Pearson’s r.

Second, the size of a correlation coefficient and the nature of a regression
equation will be affected by the amount of variance in either of the variables
concerned. For example, if one variable has a restricted range and the other a

Figure 8.15 Scatter diagrams for two identical levels of correlation

Figure 8.16 Heteroscedasticity
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wider range, the size of the correlation coefficient may be smaller than would be
the case if both were of equally wide variance.

Third, outliers—that is, extreme values of x or y—can exert an excessive
influence on the results of both correlation and regression. Consider the data
in Table 8.11. We have data on twenty firms regarding their size (as measured
by the number of employees) and the number of specialist functions in the
organization (that is, the number of specialist areas, such as accounting,
personnel, marketing, or public relations, in which at least one person spends
100 per cent of his or her time). The article by Child (1973) presents a similar
variable with a maximum score of 16, which formed the idea for this
example. In Table 8.11, we have an outlier—case number 20—which is much
larger than all of the other firms in the sample. It is also somewhat higher in
terms of the number of specialist functions than the other firms. In spite of
the fact that this is only one case, its impact on estimates of both correlation
and regression is quite pronounced. The Pearson’s r is 0.67 and the regres-
sion equation is y=5.55+0.00472size. If the outlier is excluded, the mag-
nitude of r rises to 0.78 and the regression equation is y=0.78+0.0175size.

Table 8.11 The impact of outliers: the relationship between size of firm and number of
specialist functions (imaginary data)

Note:
When case 20 is included, Pearson’s r=0.67 and the regression equation is:

specialization=5.55+0.00472size.
When case 20 is excluded, Pearson’s r=0.78 and the regression equation is:

specialization=0.78+0.0175size.
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Such a difference can have a dramatic effect on predictions. If we wanted to
know the likely value of y (number of specialist functions) for an organization
of 340 employees with all twenty cases, the prediction would be 7.15; with the
outlying case omitted the prediction is 6.73. Thus, this one outlying case can
have an important impact upon the predictions that are generated. When such a
situation arises, serious consideration has to be given to the exclusion of such an
outlying case.

The purpose of this section has been to introduce the general idea of
regression. In Chapter 10, it will receive a much fuller treatment, when the use
of more than one independent variable will be examined, an area in which the
power of regression is especially evident.

Generating basic regression analysis with SPSS

SPSS can generate a host of information relating to regression. However, much
of this information is too detailed for present purposes; only some of it will be
examined in Chapter 10. It is proposed to postpone a detailed treatment of
generating regression information until this later chapter. The following
discussion should allow the user to generate basic regression information
relating to the relationship between two variables. Imagine that we want to
undertake a simple regression analysis of routine and satis, with the latter as the
implied dependent variable. The following sequence should be followed:
 

�Statistics �Regression �Linear…[opens Linear Regression dialog
box shown in Box 8.9]
�satis ������button [puts satis in Dependent: box] �routine ������button
[puts routine in Independent[s]: box] �OK

The regression equation can be found under Coefficients in the resulting output
(see Table 8.12). The equation is:

satis=17.094–0.464routine
 

which can be rounded to:

satis=17.09-0.46routine
 

This implies that for every increment of routine, satis declines by 0.46. We are
also given quite a large amount of extra information. We are given the
coefficient of determination, r2, which is 0.336 (see R Square), which implies
that 33.6% of the variance in satis is explained by routine. Other basic useful
information includes an estimation of the statistical significance of the
coefficients relating to the constant in the equation and to routine using the t
value and an analysis of variance which provides an F test for the equation. The
p values suggest that the coefficients and the equation itself achieve a high level
of statistical significance.
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Box 8.9 Linear Regression dialog box

A scatter diagram along with a fitted regression line and basic regression
information can be generated in SPSS. To generate this output, a scatter
diagram needs to be generated as above, using the sequence previously
followed:

�Graphs �Scatter…[opens Scatterplot dialog box shown in Box 8.4]
�Simple �Define [closes Scatterplot dialog box and opens Simple
Scatterplot subdialog box shown in Box 8.5]
�satis ������button [puts satis in box by Y Axis:] �routine������button
[puts routine in box by X Axis:] �OK

When the diagram has appeared:

double-click anywhere in the Scatterplot [opens SPSS Chart Editor]
�Chart �Options…[opens Scatterplot: Options subdialog box]
�Total under Fit Line �OK

A regression line will be drawn onto the scatter diagram.
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OVERVIEW OF TYPES OF VARIABLE AND METHODS
OF EXAMINING RELATIONSHIPS

The following rules of thumb are suggested for the various types of combination
of variable that may occur:
 
1 Nominal-nominal. Contingency-table analysis in conjunction with chisquare

as a test of statistical significance can be recommended. To test for strength
of association, Cramer’s V can be used.

Table 8.12 Regression analysis: satis by routine
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2 Ordinal-ordinal. Spearman’s rho or Kendall’s tau and their associated
significance tests.

3 Interval-interval. Pearson’s r and regression for estimates of the strength and
character of relationships respectively. Each can generate tests of statistical
significance, but more detail in this regard for regression is provided in
Chapter 10.

4 Dichotomous-dichotomous. Same as under 1 for nominal-nominal, except
that phi should be used instead of Cramer’s V (and will be generated by SPSS
instead of V).

5 Interval-ordinal. If the ordinal variable assumes quite a large number of
categories, it will probably be best to use rho or tau. Contingency-table
analysis may be used if there are few categories in both the ordinal and
interval variables (or if categories can meaningfully be ‘grouped’). If the
interval variable can be relatively unambiguously identified as the dependent
variable and if the ordinal variable has few categories, another approach may
be to use the Means procedure and to request an analysis of variance which
will in turn allow an F ratio to be computed. In this way, a test of statistical
significance can be provided, along with eta-squared.

6 Interval-nominal or -dichotomous. Contingency-table analysis plus the use of
chi-square may be employed if the interval variable can be sensibly
‘collapsed’ into categories. This approach is appropriate if it is not
meaningful to talk about which is the independent and which is the dependent
variable. If the interval variable can be identified as a dependent variable, the
Means procedure and its associated statistics should be considered.

7 Nominal-ordinal. Same as 1.

EXERCISES

1. (a) Using SPSS, how would you create a contingency table for the rela-
tionship between gender and prody, with the former variable going
across, along with column percentages (Job-Survey data)?

(b) How would you assess the statistical significance of the relationship with
SPSS?

(c) In your view, is the relationship statistically significant?
(d) What is the percentage of women who are described as exhibiting ‘good’

productivity?

2. A researcher carries out a study of the relationship between ethnic group and
voting behaviour. The relationship is examined through a contingency table,
for which the researcher computes the chi-square statistic. The value of chi-
square turns out to be statistically significant at p<0.01. The researcher
concludes that this means that the relationship between the two variables is
important and strong. Assess this reasoning.
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3. (a) Using SPSS, how would you generate a matrix of Pearson’s r correlation
coefficients for income, years, satis and age (Job-Survey data)?

(b) Conduct an analysis using the commands from Question 3(a). Which
pair of variables exhibits the largest correlation?

(c) Taking this pair of variables, how much of the variance in one variable is
explained by the other?

4. A researcher wants to examine the relationship between social class and
number of books read in a year. The first hundred people are interviewed as
they enter a public library in the researcher’s home town. On the basis of the
answers given, the sample is categorized in terms of a fourfold classification
of social class: upper middle class/lower middle class/upper working class/
lower working class. Using Pearson’s r, the level of correlation is found to be
0.73 which is significant at p<0.001 The researcher concludes that the
findings have considerable validity, especially since 73 per cent of the variance
in number of books read is explained by social class. Assess the researcher’s
analysis and conclusions.

5. A researcher f inds that the correlation between income and a scale
measuring interest in work is 0.55 (Pearson’s r) which is non-significant since
p is greater than 0.05. This finding is compared to another study using the
same variables and measures which found the correlation to be 0.46 and
p<0.001. How could this contrast arise? In other words, how could the larger
correlation be non-significant and the smaller correlation be significant?

6. (a) What statistic or statistics would you recommend to estimate the
strength of the relationship between prody and commit (Job-Survey
data)?

(b) What SPSS commands would you use to generate the relevant estimates?
(c) What is the result of using these commands?

7. The regression equation for the relationship between age and autonom
(with the latter as the dependent variable) is:

    autonom=6.964+0.06230age r=0.28   

(a) Explain what 6.964 means.
(b) Explain what 0.06230 means.
(c) How well does the regression equation fit the data?
(d) What is the likely level of autonom for someone aged 54?
(e) Using SPSS, how would you generate this regression information?

 
 



Chapter 9

Multivariate analysis
Exploring differences among three
or more variables

In most studies in the social sciences we collect information on more than just
two variables. Although it would be possible and more simple to examine the
relationships between these variables just two at a time, there are serious
disadvantages to restricting oneself to this approach, as we shall see. It is
preferable initially to explore these data with multivariate rather than bivariate
tests. The reasons for looking at three or more variables vary according to the
aims and design of a study. Consequently, we will begin by outlining four
design features which only involve three variables at a time. Obviously these
features may include more than three variables and the features themselves can
be combined to form more complicated designs, but we shall discuss them
largely as if they were separate designs. However, as has been done before, we
will use one set of data to illustrate their analysis, all of which can be carried out
with a general statistical model called multivariate analysis of variance and
covariance (MANOVA and MANCOVA). This model requires the Advanced
Statistics option. Although the details of the model are difficult to understand
and to convey simply (and so will not be attempted here), its basic principles are
similar to those of other parametric tests we have previously discussed such as
the t test, one-way analysis of variance, and simple regression.

MULTIVARIATE DESIGNS

Factorial design

We are often interested in the effect of two variables on a third, particularly if we
believe that the two variables may influence one another. To take a purely
hypothetical case, we may expect the gender of the patient to interact with the
kind of treatment they are given for feeling depressed. Women may respond
more positively to psychotherapy where they have an opportunity to talk about
their feelings while men may react more favourably to being treated with an
antidepressant drug. In this case, we are anticipating that the kind of treatment
will interact with gender in alleviating depression. An interaction is when the
effect of one variable is not the same under all the conditions of the other

204



Multivariate analysis: exploring differences 205

variable. It is often more readily understood when it is depicted in the form of a
graph as in Figure 9.1. However, whether these effects are statistically significant
can only be determined by testing them and not just by visually inspecting them.
The vertical axis shows the amount of improvement in depression that has taken
place after treatment, while the horizontal one can represent either of the other
two variables. In this case it reflects the kind of treatment received. The effects of
the third variable, gender, are depicted by two different kinds of points and lines
in the graph itself. Men are indicated by a cross and a continuous line while
women are signified by a small circle and a broken line.

An interaction is indicated when the two lines representing the third variable
are not parallel. Consequently, a variety of interaction effects can exist, three of
which are shown in Figure 9.2 as hypothetical possibilities. In Figure 9.2a, men
show less improvement with psychotherapy than with drugs while women
derive greater benefit from psychotherapy than from the drug treatment. In
Figure 9.2b, men improve little with either treatment, while women, once again,
benefit considerably more from psychotherapy than from drugs. Finally, in
Figure 9.2c, both men and women improve more with psychotherapy than with
drugs, but the improvement is much greater for women than it is for men.

The absence of an interaction can be seen by the lines representing the third
variable remaining more or less parallel to one another, as is the case in the three
examples in Figure 9.3. In Figure 9.3a, both men and women show a similar
degree of improvement with both treatments. In Figure 9.3b, women improve
more than men under both conditions while both treatments are equally
effective. In Figure 9.3c, women show greater benefit than men with both
treatments, and psychotherapy is better than drugs.

The results of treatment and gender on their own are known as main effects. In
these situations, the influence of the other variable is disregarded. If, for example,
we wanted to examine the effect of gender, we would look only at improvement
for men and women, ignoring treatment. If we were interested in the effect of the
kind of treatment, we would simply compare the outcome of patients receiving
psychotherapy with those being given drugs, paying no heed to gender.

Figure 9.1 An example of an interaction between two variables
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Figure 9.2 Examples of other interactions

The variables which are used to form the comparison groups are termed
factors. The number of groups which constitute a factor are referred to as the
levels of that factor. Since gender consists of two groups, it is called a two-level
factor. The two kinds of treatment also create a two-level factor. If a third
treatment had been included, such as a control group of patients receiving
neither drugs nor psychotherapy, we would have a three-level factor. Studies
which investigate the effects of two or more factors are known as factorial
designs. A study comparing two levels of gender and two levels of treatment is
described as a 2×2 factorial design. If three rather than two levels of treatment
were compared, it would be a 2×3 factorial design. A study which only looks at
one factor is called a one-way or single factor design.

The factors in these designs may be ones that are manipulated such as dif-
fering dosages of drugs, different teaching methods, or varying levels of induced
anxiety. Where they have been manipulated and where subjects have been
randomly assigned to different levels, the factors may also be referred to as inde-
pendent variables since they are more likely to be unrelated to, or independent
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Figure 9.3 Examples of no interactions

of, other features of the experimental situation such as the personality of the
participants. Variables which are used to assess the effect of these independent
variables are known as dependent variables since the effect on them is thought
to depend on the level of the variable which has been manipulated. Thus, for
example, the improvement in the depression experienced by patients (i.e. the
dependent variable) is believed to be partly the result of the treatment they have
received (i.e. the independent variable). Factors can also be variables which
have not been manipulated, such as gender, age, ethnic origin, and social class.
Because they cannot be separated from the individual who has them, they are
sometimes referred to as subject variables. A study which investigated the effect
of such subject variables would also be called a factorial design.

One of the main advantages of factorial designs, other than the study of
interaction effects, is that they generally provide a more sensitive or powerful
statistical test of the effect of the factors than designs which investigate just one
factor at a time. To understand why this is the case, it is necessary to describe
how a one-way and a two-way (i.e. a factorial) analysis of variance differ. In
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one-way analysis of variance, the variance in the means of the groups (or levels)
is compared with the variance within them combined for all the groups:
 

 
The between-groups variance is calculated by comparing the group mean with
the overall or grand mean, while the within-groups variance is worked out by
comparing the individual scores in the group with its mean. If the group means
differ, then their variance should be greater than the average of those within
them. This situation is illustrated in Figure 9.4 where the means of the three
groups (M1, M2, and M3) are quite widely separated causing a greater spread of
between-groups variance (VB), while the variance within the groups (V1, V2, and
V3) is considerably less when combined (Vw).

Now the variance within the groups is normally thought of as error since this
is the only way in which we can estimate it, while the between-groups variance
is considered to consist of this error plus the effect of the factor which is being
investigated. While some of the within-groups variance may be due to error
such as that of measurement and of procedure, the rest of it will be due to factors
which we have not controlled such as gender, age, and motivation. In other
words, the within-groups variance will contain error as well as variance due to
other factors, and so will be larger than if it just contained error variance.
Consequently, it will provide an overestimate of error. In a two-factor design,
on the other hand, the variance due to the other factor can be removed from
this overestimate of the error variance, thereby giving a more accurate calcu-
lation of it. If, for example, we had just compared the effectiveness of the drug

Figure 9.4 Schematic representation of a significant one-way effect
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treatment with psychotherapy in reducing depression, then some of the within-
groups variance would have been due to gender but treated as error, and may
have obscured any differential effect due to treatment.

Covariate design

Another way of reducing error variance is by removing the influence of a
noncategorical variable (i.e. one that is not nominal) which we believe to be
biasing the results. This is particularly useful in designs where participants are
not randomly assigned to factors, such as in the Job-Survey study, or where
random assignment did not result in the groups being equal in terms of some
other important variable, such as how depressed patients were before being
treated. A covariate is a variable which is linearly related to the one we are most
directly interested in, usually called the dependent or criterion variable.

We will give two examples of the way in which the effect of covariates may
be controlled. Suppose, for instance, we wanted to find out the relationship
between job satisfaction and the two factors of gender and ethnic group in the
Job-Survey data and we knew that job satisfaction was positively correlated with
income, so that people who were earning more were also more satisfied with
their jobs. It is possible that both gender and ethnic group will also be related to
income. Women may earn less than men, and non-white workers may earn less
than their white counterparts. If so, then the relationship of these two factors to
job satisfaction is likely to be biased by their association with income. To control
for this, we will remove the influence of income by covarying it out. In this case,
income is the covariate. If income was not correlated with job satisfaction, then
there would be no need to do this. Consequently, it is only advisable to control
a covariate when it has been found to be related to the dependent variable.

In true experimental designs, we try to control the effect of variables other
than the independent ones by randomly assigning participants to different
treatments or conditions. However, when the number of participants allocated to
treatments is small (say, about ten or less), there is a stronger possibility that
there will be chance differences between them. If, for example, we are interested
in comparing the effects of drugs with psychotherapy in treating depression, it is
important that the patients in the two conditions should be similar in terms of
how depressed they are before treatment begins (i.e. at pre-test). If the patients
receiving the drug treatment were found at pre-test to be more depressed than
those having psychotherapy, despite random assignment, then it is possible that
because they are more depressed to begin with, they will show less improvement
than the psychotherapy patients. If pre-test depression is positively correlated
with depression at the end of treatment (i.e. at post-test), then the effect of these
initial differences can be removed statistically by covarying them out. The
covariate in this example would be the pre-test depression scores.

Three points need to be made about the selection of covariates. First, as
mentioned before, they should only be variables which are related to the
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dependent variable. Variables which are unrelated to it do not require to be
covaried out. Second, if two covariates are strongly correlated with one another
(say 0.8 or above), it is only necessary to remove one of them since the other
one seems to be measuring the same variable(s). And third, with small numbers
of participants only a few covariates at most should be used, since the more
covariates there are in such situations, the less powerful the statistical test
becomes.

Multiple measures design

In many designs we may be interested in examining differences in more than
one dependent or criterion measure. For example, in the Job-Survey study, we
may want to know how differences in gender and ethnic group are related to job
autonomy and routine as well as satisfaction. In the depression study, we may
wish to assess the effect of treatment in more than one way. How depressed the
patients themselves feel may be one measure; another may be how depressed
they appear to be to someone who knows them well, such as a close friend or
informant. One of the advantages of using multiple measures is to find out how
restricted or widespread a particular effect may be. In studying the effectiveness
of treatments for depression, for instance, we would have more confidence in
the results if the effects were picked up by a number of similar measures rather
than just one. Another advantage is that although groups may not differ on
individual measures, they may do so when a number of related individual
measures are examined jointly. Thus, for example, psychotherapy may not be
significantly more effective than the drug treatment when outcome is assessed
by either the patients themselves or by their close friends, but it may be
significantly better when these two measures are analyzed together.

Mixed between-within design

The multiple-measures design needs to be distinguished from the
repeatedmeasures design which we encountered at the end of Chapter 7. A
multiple-measures design has two or more dependent or criterion variables such
as two separate measures of depression. A repeated-measures design, on the
other hand, consists of one or more factors being investigated on the same group
of participants. Measuring job satisfaction or depression at two or more points
in time would be an example of such a factor. Another would be evaluating the
effectiveness of drugs and psychotherapy on the same patients by giving them
both treatments. If we were to do this, we would have to make sure that half the
patients were randomly assigned to receiving psychotherapy first and the drug
treatment second, while the other patients would be given the two treatments in
the reverse order. It is necessary to counterbalance the sequence of the two
conditions to control for order effects. It would also be advisable to check that
the sequence in which the treatments were administered did not affect the
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results. The order effect would constitute a between-subjects factor since any
one participant would receive only one of the two orders. In other words, this
design would become a mixed one which included both a between-subjects
factor (order) and a within-subjects factor (treatment). One of the advantages of
this design is that it restricts the amount of variance due to individuals, since the
same treatments are compared on the same participants.

Another example of a mixed between-within design is where we assess the
dependent variable before as well as after the treatment, as in the study on
depression comparing the effectiveness of psychotherapy with drugs. This
design has two advantages. The first is that the pre-test enables us to determine
whether the groups were similar in terms of the dependent variable before the
treatment began. The second is that it allows us to determine if there has been
any change in the dependent variable before and after the treatment has been
given. In other words, this design enables us to discern whether any
improvement has taken place as a result of the treatment and whether this
improvement is greater for one group than the other.

Combined design

As was mentioned earlier, the four design features can be combined in various
ways. Thus, for instance, we can have two independent factors (gender and
treatment for depression), one covariate (age), two dependent measures
(assessment of depression by patient and informant), and one repeated measure
(pre-and post-test). These components will form the basis of the following
illustration, which shall be referred to as the Depression Project. The data for it
are shown in Table 9.1. There are three treatments: a no treatment control
condition (coded 1 and with eight participants); a psychotherapy treatment
(coded 2 and with ten participants); and a drug treatment (coded 3 and with
twelve participants). Females are coded as 1 and males as 2. A high score on
depression indicates a greater degree of it. The patient’s assessment of their
depression before and after treatment is referred to as patpre and patpost
respectively, while the assessment provided by an informant before and after
treatment is known as infpre and infpost. We shall now turn to methods of
analyzing the results of this kind of study using MANOVA or MANCOVA.

MULTIVARIATE ANALYSIS

The example we have given is the more common one in which there are unequal
numbers of cases on one or more of the factors. Although it is possible to
equalize them by randomly omitting two participants from the psychotherapy
treatment and four from the drug one, this would be a waste of valuable data and
so is not recommended.

There are four main ways of analyzing the results of factorial designs with
SPSS. The first method, referred to as Type I in SPSS and previously known as
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the hierarchical or sequential approach, allows the investigator to determine the
order of the effects. If one factor is thought to precede another, then it can be
placed first. This approach should be used in non-experimental designs where
the factors can be ordered in some sequential manner. If, for example, we are
interested in the effect of ethnic group and income on job satisfaction, then
ethnic group would be entered first since income cannot determine the ethnic
group to which we belong. It should also be used in analysis of covariance
designs where main and interaction effects need to be examined after the
influence of the covariate(s) have been initially partialled out.

Type II, previously known as the regression, unweighted means or unique
approach, is used where there are equal numbers of cases in each cell or where
the design is balanced in that the cell frequencies are proportional in terms of
their marginal distributions. Tabachnick and Fidell (1996) recommend that this
method should also be used for true experimental designs where there are

Table 9.1 The Depression-Project data
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unequal numbers of cases in cells due to random drop-out, and where all cells
are considered to be equally important.

Type III, previously known as classic experimental or least squares
approach, is the default and can be used with balanced or unbalanced designs
where there are some cases in all cells. Tabachnick and Fidell (1996)
recommend that this method should be used for non-experimental designs
where there are unequal numbers of cases in cells, and where cells having larger
numbers of cases are thought to be more important.

Type IV is applied with balanced or unbalanced designs where there are no
cases in some cells.

All four methods produce the same result for analysis of variance designs
when there are equal numbers of participants in cells. For an unbalanced two-
way analysis of variance design, they only differ in the way they handle main
effects so the results for the interaction effects and the error are the same. Where
the main effects are not independent, the component sums of squares do not add
up to the total sum of squares.

In this chapter, we have followed the recommendation of SPSS and used the
Type III method. However, according to Tabachnick and Fidell (1996), the Type
II method would have been more appropriate for the analysis of variance
designs because the design is a true experimental one. Also, the Type I method
would have been more suitable for the covariate analyses where we wished to
examine the effects of the variables after the influence of the covariate had been
removed.

Factorial design

To determine the effect of treatment, gender and their interaction on post-test
depression as seen by the patient, the following procedure is needed:
 

�Statistics �General Linear Model �GLM—General Factorial…
[opens GLM—General Factorial dialog box shown in Box 9.1]
�patpost ������button beside Dependent Variable: [puts patpost in this
box] �gender ������button beside Fixed Factor[s]: [puts gender in this
box] �treat ������button beside Fixed Factor [s]: [puts treat in this box]
�Options…[opens GLM—General Factorial: Options subdialog box
shown in Box 9.2]
�Descriptive statistics �Homogeneity tests �Continue [closes GLM
—General Factorial: Options subdialog box]
�OK

 
The means for the three treatments for women and men are shown in Table 9.2.

Levene’s test for homogeneity of variance is displayed in Table 9.3. It is not
significant, which means there are no significant differences between the vari-
ances of the groups, an assumption on which this test is based. If the variances
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had been grossly unequal, then it may have been possible to reduce this through
transforming the data by taking the log or square root of the dependent variable.
This can easily be done with the Compute procedure on the Transform menu
which displays the Compute Variable dialog box shown in Box 3.8. For
example, the natural or Naperian log (base e) of patpost is produced by
selecting the LN(numexpr) Function and inserting patpost as the numerical
expression. The square root of patpost is created by selecting the
SQRT(numexpr) Function. It is necessary to check that the transformations
have produced the desired effect.

The tests of significance for determining the unique sum of squares for each
effect are shown in Table 9.4. These indicate that there is a significant effect for
the treatment factor (p<0.0005) and a significant interaction effect for treatment
and gender (p=0.016). If we plot this interaction, we can see that depression
after the drug treatment is higher for women than men, while after
psychotherapy it is higher for men than women. The mean square of an effect is
its sum of squares divided by its degrees of freedom. Thus, for example, the
mean square of the treatment effect is 767.942 divided by 2 which is 383.971.
The F value for an effect is its mean square divided by that of the within-cells

Box 9.1 GLM—General Factorial dialog box
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Box 9.2 GLM—General Factorial: Options subdialog box

Table 9.2 Means of post-test depression (patpost) in the three
treatments for men and women (Depression Project)
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and residual term. So, for the treatment effect this would be 383.971 divided by
16.163 which is 23.756.

Having found that there is an overall significant difference in depression for
the three treatments, we need to determine where this difference lies. One way
of doing this is to test for differences between two treatments at a time. If we
had not anticipated certain differences between treatments, we would apply a
priori tests such as Scheffé to determine their statistical significance, whereas if
we had predicted them we would use unrelated t tests (see Chapter 7).

Covariate design

If the patients’ pre-test depression scores differ for gender, treatment or their
interaction and if the pre-test scores are related to the post-test ones, then the
results of the previous test will be biased by this. To determine if there are such
differences, we need to run a factorial analysis on the patients’ pre-test
depression scores. If we do this, we find that there is a significant effect for

Table 9.3 Homogeneity tests output (Depression Project)

Table 9.4 Tests of significance for main and interaction effects of a factorial design
(Depression Project)
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treatments (see the output in Table 9.5), which means that the pre-test
depression scores differ between treatments.

Covariate analysis is based on the same assumptions as the previous factorial
analysis plus three additional ones. First, there must be a linear relationship
between the dependent variable and the covariate. If there is no such relationship,
then there is no need to conduct a covariate analysis. This assumption can be
tested by plotting a scatter diagram (see Chapter 8) to see if the relationship
appears non-linear. If the correlation is statistically significant, then it is
appropriate to carry out a covariate analysis. The statistical procedure GLM—
General Factorial also provides information on this (see pp. 219–20). If the
relationship is non-linear, it may be possible to transform it so that it becomes
linear using a logarithmic transformation of one variable. The procedure for
effecting such a transformation with SPSS has been described on page 214.

The second assumption is that the slope of the regression lines is the same in
each group or cell. If they are the same, this implies that there is no interaction
between the independent variable and the covariate and that the average within-
cell regression can be used to adjust the scores of the dependent variable. This
information is also provided by GLM—General Factorial. If this condition is
not met, then the Johnson-Neyman technique should be considered. This
method is not available on SPSS but a description of it may be found elsewhere
(Huitema 1980).

The third assumption is that the covariate should be measured without error.
For some variables such as gender and age, this assumption can usually be
justified. For others, however, such as measures of depression, this needs to be
checked. This can be done by computing the alpha reliability coefficient for
multi-item variables (such as job satisfaction) or test-retest correlations where
this information is available. A coefficient of 0.8 or above is usually taken as
indicating a reliable measure. This assumption is more important in non- than

Table 9.5 Tests of significance for effects on pre-test depression (Depression Project)
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in true-experimental designs, where its violation may lead to either Type I or II
errors. In true-experimental designs, the violation of this assumption only leads
to loss of power. As there are no agreed or simple procedures for adjusting
covariates for unreliability, these will not be discussed.

The following procedure is necessary to test whether the regression lines are
the same in each of the cells for the analysis of covariance in which the effect of
treatment on the patients’ post-test depression scores, controlling for their pre-
test ones, is examined:
 

�Statistics �General Linear Model �GLM—General Factorial…
[opens GLM—General Factorial dialog box shown in Box 9.1]
�patpost ������button beside Dependent Variable: [puts patpost in this
box] �treat ������button beside Fixed Factor[s]: [puts treat in this
box] �patpre ������button beside Covariate[s]: [puts patpre in this box]
�Model…[opens GLM—General Factorial: Model subdialog box
shown in Box 9.3]
�Custom �treat ������button [puts treat under Model:] �patpre
������button [puts patpre under Model:] �Interaction �treat �patpre
������button [puts patpre*treat under Model:] �Continue [closes
GLM—General Factorial: Model subdialog box]
�OK

Box 9.3 GLM—General Factorial: Model subdialog box
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The output for this procedure is presented in Table 9.6. The interaction between
the independent variable of treatment and the covariate of patpre is not
significant since p is 0.793. This means that the slope of the regression line in
each of the cells is similar and therefore the second assumption is met.

Consequently we can proceed with the main analysis of covariance using the
following procedure:
 

�Statistics �General Linear Model �GLM—General Factorial…
[opens GLM—General Factorial dialog box shown in Box 9.1]
�patpost ������button beside Dependent Variable: [puts patpost in this
box] � treat ������button beside Fixed Factor [s]: [puts treat in this box]
�patpre ������button beside Covariate[s]: [puts patpre in this box]
�Model…[opens GLM—General Factorial: Model subdialog box
shown in Box 9.3]
�Full factorial �Continue [closes GLM—General Factorial: Model
subdialog box]
�Options…[opens GLM—General Factorial: Options subdialog box
shown in Box 9.2] �treat ������button [puts treat under Display Means
for:] �Continue [closes GLM—General Factorial: Options subdialog
box]
�OK

The analysis of covariance table (Table 9.7) shows that the relationship between
the covariate (patpre) and the dependent variable (patpost) is significant.
Consequently, it is appropriate to proceed with the interpretation of the
covariate analysis. This table also shows there is a significant treatment effect
when pretreatment depression is covaried out.

Table 9.6 Analysis of covariance tables showing test of homogeneity of slope of
regression line within cells (Depression Project)
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An inspection of the adjusted means for the three treatments presented in
Table 9.8 compared with the observed means in Table 9.2 shows that controlling
for pre-treatment depression has little effect on the mean for the control group,
which remains at about 25. However, it makes a considerable difference to the
means of the two treatment conditions, reversing their order so that patients who
received psychotherapy report themselves as being more depressed than those
given the drug treatment. The means have been adjusted using the weighted
rather than the unweighted covariate grand mean (Cramer 1998). The Bryant-
Paulson post hoc test for determining whether this difference is significant is
described in Stevens (1996).

Multiple measures design

So far, we have only analyzed one of the two dependent measures, the patient’s
self-report of depression. Analyzing the two dependent measures together has

Table 9.7 Analysis of covariance table (Depression Project)

Table 9.8 Adjusted means of post-test depression in the three treatments
(Depression Project)
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certain advantages. First, it reduces the probability of making Type I errors
(deciding there is a difference when there is none) when making a number of
comparisons. The probability of making this error is usually set at 0.05 when
comparing two groups on one dependent variable. If we made two such
independent comparisons, then the p level would increase to about 0.10. Since
the comparisons are not independent, this probability is higher. Second,
analyzing the two dependent measures together provides us with a more
sensitive measure of the effects of the independent variables.

The following procedure is necessary to test the effect of treatment on both
the patient’s and the informant’s post-test assessment of the patient’s
depression:
 

�Statistics �General Linear Model �GLM—Multivariate…[opens
GLM—Multivariate dialog box shown in Box 9.4]
�patpost ������button beside Dependent Variables: [puts patpost in this
box] �infpost ������button beside Dependent Variables: [puts infpost in
this box] �treat ������button beside Fixed Factor[s]: [puts treat in this
box] �Options…[opens GLM—Multivariate: Options subdialog box
shown in Box 9.5]

Box 9.4 GLM—Multivariate dialog box
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Box 9.5 GLM—Multivariate: Options subdialog box

 
�Descriptive statistics �Residual SSCP matrix [gives Bartlett’s test of
sphericity] �Homogeneity tests [gives Box’s M and Levene’s test]
�Continue [closes GLM—Multivariate: Options subdialog box]
�OK

 
The means and standard deviations for patpost and infpost for the three

treatment conditions are shown in Table 9.9.
The results for Box’s M and Levene’s test are presented in Tables 9.10 and

9.11 respectively. Box’s M test determines whether the covariance matrices of
the two dependent variables are similar while Levene’s test assesses whether
their variances are similar. For this example, both tests are not sigificant which
means that the covariance matrices and the variances do not differ significantly
across the three conditions.
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Table 9.9 Means and standard deviations of patpost and infpost for the three
treatments

Table 9.10 Box’s M test (Depression Project)

Table 9.11 Levene’s test (Depression Project)

Table 9.12 Bartlett’s test of sphericity (Depression Project)
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Table 9.12 shows the output for Bartlett’s test of sphericity which assesses
whether the dependent measures are correlated. If the test is significant, as it is
here, it means the two dependent measures are related. In this situation, it is
more appropriate to use the multivariate test of significance to determine
whether there are significant differences between the treatments. The result of
this test is presented in Table 9.13 and shows the treatment effect to be
significant when the two measures are taken together.

The univariate F tests for the treatment effect, which are presented in Table
9.14, show that the treatments differ on both the dependent measures when they
are analyzed separately. To determine which treatments differ significantly from

Table 9.13 Multivariate tests of significance for the treatment effect (Depression Project)

Table 9.14 Univariate tests of significance for the two dependent measures (Depression
Project)

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept+TREAT

a. R Squared=.580 (Adjusted R Squared=.549)

b. R Squared=.460 (Adjusted R Squared=.420)
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one another, it would be necessary to carry out a series of unrelated t tests or
post hoc tests as discussed previously.

Mixed between-within design

The procedure for determining if there is a significant difference between the
three conditions in improvement in depression as assessed by the patient before
(patpre) and after (patpost) treatment is:
 

�Statistics �General Linear Model �GLM—Repeated Measures…
[opens GLM—Repeated Measures Define Factor[s] dialog box shown
in Box 9.6]
�highlight factor1 and type time in Within-Subject Factor Name: box
�Number of Levels: box and type 2 �Add �Define [opens GLM—
Repeated Measures subdialog box shown in Box 9.7]
�patpre ������button beside Within-Subjects Variables [time]: [puts pat-
pre in this box] ������patpost ������button beside Within-Subjects Variables
[time]: [puts patpost in this box] �treat ������button beside Between-
Subjects Factor[s]: [puts treat in this box] �Options…[opens GLM—
Repeated Measures: Options subdialog box shown in Box 9.8]
�Descriptive statistics �Continue [closes GLM—Repeated Measures:
Options subdialog box]
�OK

 
There is a significant effect for the interaction between treatment and time (i.e.
the change between the pre- and the post-treatment scores), as indicated in the
output in Table 9.15.

Box 9.6 GLM—Repeated Measures Define Factor[s] dialog box
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If we look at the means of the patients’ pre-test and post-test depression
scores in Table 9.16, we can see that the amount of improvement shown by the
three groups of patients is not the same. Least improvement has occurred in the
group receiving no treatment (30.13-25.38=4.75), while patients being
administered the drug treatment exhibit the most improvement (35.42-22.25=
13.17).

Table 9.15 Test of significance for interaction between time and treatment (Depression
Project)

Box 9.7 GLM—Repeated Measures subdialog box
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Box 9.8 GLM—Repeated Measures: Options subdialog box

Statistical differences in the amount of improvement shown in the three
treatments could be further examined using One-Way ANOVA where the
dependent variable is the computed difference between pre- and post-test
patient depression.

Combined design

As pointed out earlier on, it is possible to combine some of the above analyses.
To show how this can be done, we shall look at the effect of two between-
subjects factors (treatment and gender) and one within-subjects factor (pre- to
post-test or time) on two dependent variables (depression as assessed by the
patient and an informant), covarying out the effects of age which we think might
be related to the pre- and post-test measures. The following procedure would be
used to carry this out:
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�Statistics �General Linear Model �GLM—Repeated Measures…
[opens GLM—Repeated Measures Define Factor[s] dialog box shown
in Box 9.6]
�highlight factor1 and type time in Within-Subject Factor Name: box
�Number of Levels: box and type 2 �Add �Measure>> [opens more

Table 9.16 Means and standard deviations of patient-rated pre-test (patpre) and posttest
(patpost) depression in the three treatments (Depression Project)

Box 9.9 Full GLM—Repeated Measures Define Factor[s] dialog box
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Box 9.10 GLM—Repeated Measures subdialog box (combined design analysis)

of GLM—Repeated Measures Define Factor[s] dialog box shown in Box
9.9]
�type pat in Measure Name: box �type inf in Measure Name: box
�Define [opens GLM—Repeated Measures subdialog box shown in Box
9.10]
�patpre ������button beside Within-Subjects Variables [time]: [puts pat-
pre in this box] �patpost ������button beside Within-Subjects Variables
[time]: [puts patpost in this box] �infpre ������button beside Within-
Subjects Variables [time]: [puts infpre in this box] �infpost ������button
beside Within-Subjects Variables [time]: [puts infpost in this box]
�treat ������button beside Between-Subjects Factor[s]: [puts treat in this
box] �gender ������button beside Between-Subjects Factor [s]: [puts gen-
der in this box] �age ������button beside Covariates: [puts age in this box]
�Options…[opens GLM—Repeated Measures: Options subdialog
box shown in Box 9.8]



230 Multivariate analysis: exploring differences

�Descriptive statistics �Transformation matrix �Continue [closes
GLM—Repeated Measures: Options subdialog box]
�OK

 
In conducting a multivariate analysis of covariance, it is necessary to check that
the covariate (AGE) is significantly correlated with the two dependent
variables, which it is as the output in Table 9.17 shows.

The output for the multivariate tests is reproduced in Table 9.18. This shows
a significant effect for the time by treatment by gender interaction effect.

The univariate tests in Table 9.19 demonstrate the interaction effect to be
significant (p<0.0005) for the patient measure only (PAT). It is not significant
(p=0.176) for the informant measure (INF). PAT refers to the transformed
score which is the difference between the patient’s pre- and post-test measure
as can be seen in Table 9.20. INF represents the difference between the
informant’s pre- and post-test score. To interpret these results, it would be
necessary to compute the mean pre- and post-treatment patient depression
scores, adjusted for age, for men and women in the three treatments.
Additional analyses would have to be conducted to test these interpretations,
as described previously.

Table 9.17 Relationship between the covariate age and the two transformed variables
(Depression Project)
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Table 9.18 Multivariate tests for the interaction between time, treatment and gender
(Depression Project)

Table 9.19 Univariate tests for the interaction effect between time, treatment and
gender (Depression Project)
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EXERCISES

1. What are the two main advantages in studying the effects of two independent
variables rather than one?

2. What is meant when two variables are said to interact?

3. How would you determine whether there was a significant interaction
between two independent variables?

4. A colleague is interested in the relationship between alcohol, anxiety and
gender on performance. Subjects are randomly assigned to receiving one of
four increasing dosages of alcohol. In addition, they are divided into three
groups of low, moderate, and high anxiety. Which is the dependent variable?

5. How many factors are there in this design?

6. How many levels of anxiety are there?

7. How would you describe this design?

8. If there are unequal numbers of participants in each group and if the
variable names for alcohol, anxiety, gender, and performance are alcohol,
anxiety, gender, and perform respectively, what is the appropriate
SPSS procedure for examining the effect of the first three variables on
performance?

9. You are interested in examining the effect of three different methods of
teaching on learning to read. Although participants have been randomly
assigned to the three methods, you think that differences in intelligence may
obscure any effects. How would you try to control statistically for the effects
of intelligence?

10. What is the appropriate SPSS procedure for examining the effect of three
teaching methods on learning to read, covarying out the effect of intelligence,
when the names for these three variables are methods, read, and intell
respectively and the teaching method factor is methods?

Table 9.20 Transformed variables (Depression Project)
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11. You are studying what effect physical attractiveness has on judgements of
intelligence, likeability, honesty, and self-confidence. Participants are shown a
photograph of either an attractive or an unattractive person and are asked to
judge the extent to which this person has these four characteristics. How
would you describe the design of this study?

12. If the names of the five variables in this study are attract, intell, likeable,
honesty, and confid respectively, what is the appropriate SPSS procedure
you would use for analyzing the results of this study?

 
 



Chapter 10

Multivariate analysis
Exploring relationships among three
or more variables

In this chapter we will be concerned with a variety of approaches to the
examination of relationships when more than two variables are involved.
Clearly, these concerns follow on directly from those of Chapter 8, in which we
focused upon bivariate analysis of relationships. In the present chapter, we will
be concerned to explore the reasons for wanting to analyze three or more
variables in conjunction, that is, why multivariate analysis is an important
aspect of the examination of relationships among variables.

The basic rationale for multivariate analysis is to allow the researcher to
discount the alternative explanations of a relationship that can arise when a
survey/correlational design has been employed. The experimental researcher
can discount alternative explanations of a relationship through the combination
of having a control group as well as an experimental group (or through a
number of experimental groups) and random assignment (see Chapter 1). The
absence of these characteristics, which in large part derives from the failure or
inability to manipulate the independent variable in a survey/correlational study,
means that a number of potentially confounding factors may exist. For example,
we may find a relationship between people’s self-assigned social class (whether
they describe themselves as middle or working class) and their voting
preference (Conservative or Labour). But there are a number of problems that
can be identified with interpreting such a relationship as causal. Could the
relationship be spurious? This possibility could arise because people of higher
incomes are both more likely to consider themselves middle class and to vote
Conservative. Also, even if the relationship is not spurious, does the relationship
apply equally to young and old? We know that age affects voting preferences, so
how does this variable interact with self-assigned social class in regard to voting
behaviour? Such a finding would imply that the class-voting relationship is
moderated by age. The problem of spuriousness arises because we cannot make
some people think they are middle class and others working class and then
randomly assign participants to the two categories. If we wanted to carry out an
experimental study to establish whether a moderated relationship exists
whereby age moderated the class-voting relationship, we would use a factorial
design (see Chapter 9). Obviously, we are not able to create such experimental

234
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conditions, so when we investigate this kind of issue through surveys, we have
to recognize the limitations of inferring causal relationships from our data. In
each of the two questions about the class-voting relationship, a third variable—
income and age, respectively—potentially contaminates the relationship and
forces us to be sceptical about it.

The procedures to be explained in this chapter are designed to allow such
contaminating variables to be discounted. This is done by imposing ‘statistical
controls’ which allow the third variable to be ‘held constant’. In this way we can
examine the relationship between two variables by partialling out and thereby
controlling the effect of a third variable. For example, if we believe that income
confounds the relationship between self-assigned social class and voting, we
examine the relationship between social class and voting for each income level
in our sample. The sample might reveal four income levels, so we examine the
class-voting relationship for each of these four income levels. We can then ask
whether the relationship between class and voting persists for each income level
or whether it has been eliminated for all or some of these levels. The third
variable (i.e. the one that is controlled) is often referred to as the test factor (e.g.
Rosenberg 1968), but the term test variable is preferred in the following
discussion.

The imposition of statistical controls suffers from a number of
disadvantages. In particular, it is only possible to control for those variables
which occur to you as potentially important and which are relatively easy to
measure. Other variables will constitute further contaminating factors, but the
effects of which are unknown. Further, the time order of variables collected by
means of a survey/correlational study cannot be established through
multivariate analysis, but has to be inferred. In order to make inferences about
the likely direction of cause and effect, the researcher must look to probable
directions of causation (e.g. education precedes current occupation) or to
theories which suggest that certain variables are more likely to precede others.
As suggested in Chapter 1, the generation of causal inferences from survey/
correlational research can be hazardous, but in the present chapter we will
largely side-step these problems which are not capable of easy resolution in the
absence of a panel study.

The initial exposition of multivariate analysis will solely emphasize the
examination of three variables. It should be recognized that many examples of
multivariate analysis, particularly those involving correlation and regression
techniques, go much further than this. Many researchers refer to the relationship
between two variables as the zero-order relationship; when a third variable is
introduced, they refer to the first-order relationship, that is, the relationship
between two variables when another variable is held constant; and when two
extra variables are introduced, they refer to the second-order relationship, when
two variables are held constant.
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MULTIVARIATE ANALYSIS THROUGH
CONTINGENCY TABLES

In this section, we will examine the potential of contingency tables as a means
of exploring relationships among three variables. Four contexts in which such
analysis can be useful are provided: testing for spuriousness, testing for
intervening variables, testing for moderated relationships, and examining
multiple causation. Although these four notions are treated in connection with
contingency table analysis, they are also relevant to the correlation and
regression techniques which are examined later.

Testing for spuriousness

The idea of spuriousness was introduced in Chapter 1 in the context of a
discussion about the nature of causality. In order to establish that there exists a
relationship between two variables it is necessary to show that the relationship
is non-spurious. A spurious relationship exists when the relationship between
two variables is not a ‘true’ relationship, in that it only appears because a third
variable causes each of the variables making up the pair. In Table 10.1 a
bivariate contingency table is presented which derives from an imaginary study
of 500 manual workers in twelve firms. The table seems to show a relationship
between the presence of variety in work and job satisfaction. For example, 80
per cent of those performing varied work are satisfied, as against only 24 per
cent of those whose work is not varied. Thus there is a difference (d1) of 56 per
cent (i.e. 80-24) between those performing varied work and those not
performing varied work in terms of job satisfaction. Contingency tables are not
normally presented with the differences between cells inserted, but since these
form the crux of the multivariate contingency table analysis, this additional
information is provided in this and subsequent tables in this section.

Could the relationship between these two variables be spurious? Could it be
that the size of the firm (the test variable) in which each respondent works has
‘produced’ the relationship (see Figure 10.1)? It may be that size of firm affects
both the amount of variety of work reported and levels of job satisfaction. In
order to examine this possibility, we partition our sample into those who work
in large firms and those who work in small firms. There are 250 respondents in
each of these two categories. We then examine the relationship between amount
of variety in work and job satisfaction for each category. If the relationship is
spurious we would expect the relationship between amount of variety in work
and job satisfaction largely to disappear. Table 10.2 presents such an analysis. In
a sense, what one is doing here is to present two separate tables: one examining
the relationship between amount of variety in work and job satisfaction for
respondents from large firms and one examining the same relationship for small
firms. This notion is symbolized by the double line separating the analysis for
large firms from the analysis for small firms.
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Figure 10.1 Is the relationship between work variety and job satisfaction spurious?

What we find is that the relationship between amount of variety in work and
job satisfaction has largely disappeared. Compare d1 in Table 10.1 with both d1

and d2 in Table 10.2. Whereas d1 in Table 10.1 is 56 per cent, implying a large
difference between those whose work is varied and those whose work is not
varied in terms of job satisfaction, the corresponding percentage differences in
Table 10.2 are 10 and 11 per cent for d1 and d2 respectively. This means that
when size of firm is controlled, the difference in terms of job satisfaction
between those whose work is varied and those whose work is not varied is
considerably reduced. This analysis implies that there is not a true relationship
between variety in work and job satisfaction, because when size of firm is
controlled the relationship between work variety and job satisfaction is almost
eliminated. We can suggest that size of firm seems to affect both variables. Most
respondents reporting varied work come from large firms ([cell1+cell5]-
[cell3+cell7]) and most respondents who are satisfied come from large firms
([cell1+cell2]-[cell3+cell4]).

What would Table 10.2 look like if the relationship between variety in work
and job satisfaction was not spurious when size of firm is controlled? Table
10.3 presents the same analysis but this time the relationship is not spurious.
Again, we can compare d1 in Table 10.1 with both d1 and d2 in Table 10.3. In

Table 10.1 Relationship between work variety and job satisfaction (imaginary data)
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Table 10.1, the difference between those who report variety in their work and
those who report no variety is 56 per cent (i.e. d1), whereas in Table 10.3 the
corresponding differences are 55 per cent for large firms (d1) and 45 per cent for
small firms (d2) respectively. Thus, d1 in Table 10.3 is almost exactly the same
as d1 in Table 10.1, but d2 is 11 percentage points smaller (i.e. 56-45). However,
this latter finding would not be sufficient to suggest that the relationship is
spurious because the difference between those who report varied work and
those whose work is not varied is still large for both respondents in large firms
and those in small firms. We do not expect an exact replication of percentage
differences when we carry out such controls. Similarly, as suggested in the
context of the discussion of Table 10.2, we do not need percentage differences
to disappear completely in order to infer that a relationship is spurious. When
there is an in-between reduction in percentage differences (e.g. to around half of
the original difference), the relationship is probably partially spurious, implying
that part of it is caused by the third variable and the other part is indicative of a
‘true’ relationship. This would have been the interpretation if the original d1

difference of 56 per cent had fallen to around 28 per cent for respondents from
both large firms and small firms.

Testing for intervening variables

The quest for intervening variables is different from the search for potentially
spurious relationships. An intervening variable is one that is both a product of
the independent variable and a cause of the dependent variable. Taking the data
examined in Table 10.1, the sequence depicted in Figure 10.2 might be
imagined. The analysis presented in Table 10.4 strongly suggests that the level
of people’s interest in their work is an intervening variable. As with Tables 10.2
and 10.3, we partition the sample into two groups (this time those who report
that they are interested and those reporting no interest in their work) and exam-
ine the relationship between work variety and job satisfaction for each group.
Again, we can compare d1 in Table 10.1 with d1 and d2 in Table 10.4. In Table
10.1 d1 is 56 per cent, but in Table 10.4 d1 and d2 are 13 per cent and 20 per cent
respectively. Clearly, d1 and d2 in Table 10.3 have not been reduced to zero
(which would suggest that the whole of the relationship was through interest

Figure 10.2 Is the relationship between work variety and job satisfaction affected by an
intervening variable?
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in work), but they are also much lower than the 56 per cent difference in Table
10.1. If d1 and d2 in Table 10.4 had remained at or around 56 per cent, we would
conclude that interest in work is not an intervening variable.

The sequence in Figure 10.2 suggests that variety in work affects the
degree of interest in work that people experience, which in turn affects their
level of job satisfaction. This pattern differs from that depicted in Figure 10.1
in that if the analysis supported the hypothesized sequence, it suggests that
there is a relationship between amount of variety in work and job satisfaction,
but the relationship is not direct. The search for intervening variables is often
referred to as explanation and it is easy to see why. If we find that a test
variable acts as an intervening variable, we are able to gain some explanatory
leverage on the bivariate relationship. Thus, we find that there is a relationship
between amount of variety in work and job satisfaction and then ask why that
relationship might exist. We speculate that it may be because those who have
varied work become more interested in their work, which heightens their job
satisfaction.

It should be apparent that the computation of a test for an intervening
variable is identical to a test for spuriousness. How, then, do we know which is
which? If we carry out an analysis like those shown in Tables 10.2, 10.3 and
10.4, how can we be sure that what we are taking to be an intervening variable
is not in fact an indication that the relationship is spurious? The answer is that
there should be only one logical possibility, that is, only one that makes sense.
If we take the trio of variables in Figure 10.1, to argue that the test variable—
size of firm—could be an intervening variable would mean that we would have
to suggest that a person’s level of work variety affects the size of the firm in
which he or she works—an unlikely scenario. Similarly, to argue that the trio in
Figure 10.2 could point to a test for spuriousness, would mean that we would
have to accept that the test variable—interest in work—can affect the amount of
variety in a person’s work. This too makes much less sense than to perceive it as
an intervening variable.

One further point should be registered. It is clear that controlling for interest
in work in Table 10.4 has not totally eliminated the difference between those
reporting varied work and those whose work is not varied, in terms of job
satisfaction. It would seem, therefore, that there are aspects of the relationship
between amount of variety in work and job satisfaction that are not totally
explained by the test variable, interest in work.

Testing for moderated relationships

A moderated relationship occurs when a relationship is found to hold for some
categories of a sample but not others. Diagrammatically this can be displayed
as in Figure 10.3. We may even find the character of a relationship can differ
for categories of the test variable. We might find that for one category those
who report varied work exhibit greater job satisfaction, but for another category
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Figure 10.3 Is the relationship between work variety and job satisfaction moderated by
gender?

of people the reverse may be true (i.e. varied work seems to engender lower
levels of job satisfaction than work that is not varied).

Table 10.5 looks at the relationship between variety in work and job
satisfaction for men and women. Once again, we can compare d1 (56 per cent)
in Table 10.1 with d1 and d2 in Table 10.5, which are 85 per cent and 12 per cent
respectively. The bulk of the 56 percentage point difference between those
reporting varied work and those reporting that work is not varied in Table 10.1
appears to derive from the relationship between variety in work and job
satisfaction being far stronger for men than women and there being more men
(300) than women (200) in the sample. Table 10.5 demonstrates the importance
of searching for moderated relationships in that they allow the researcher to
avoid inferring that a set of findings pertains to a sample as a whole, when in
fact it only really applies to a portion of that sample. The term interaction effect
is often employed to refer to the situation in which a relationship between two
variables differs substantially for categories of the test variable. This kind of
occurrence was also addressed in Chapter 9. The discovery of such an effect
often inaugurates a new line of inquiry in that it stimulates reflection about the
likely reasons for such variations.

The discovery of moderated relationships can occur by design or by chance.
When they occur by design, the researcher has usually anticipated the
possibility that a relationship may be moderated (though he or she may be
wrong of course). They can occur by chance when the researcher conducts a test
for an intervening variable or a test for spuriousness and finds a marked contrast
in findings for different categories of the test variable.

Multiple causation

Dependent variables in the social sciences are rarely determined by one variable
alone, so that two or more potential independent variables can usefully be
considered in conjunction. Figure 10.4 suggests that whether someone is
allowed participation in decision-making at work also affects their level of job
satisfaction. It is misleading to refer to participation in decision-making as a
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Figure 10.4 Work variety and participation at work
 
test variable in this context, since it is really a second independent variable.
What, then, is the impact of amount of variety in work on job satisfaction when
we control the effects of participation?

Again, we compare d1 in Table 10.1 (56 per cent) with d1 and d2 in Table
10.6. The latter are 19 and 18 per cent respectively. This suggests that although
the effect of amount of variety in work has not been reduced to zero or nearly
zero, its impact has been reduced considerably. Participation in decision-
making appears to be a more important cause of variation in job satisfaction. For
example, compare the percentages in cells 1 and 3 in Table 10.6: among those
respondents who report that they perform varied work, 93 per cent of those who
experience participation exhibit job satisfaction, whereas only 30 per cent of
those who do not experience participation are satisfied.

One reason for this pattern of findings is that most people who experience
participation in decision-making also have varied jobs, that is (cell1+cell5)-
(cell2+cell6). Likewise, most people who do not experience participation have
work which is not varied, that is (cell4+cell8)-(cell3+cell7). Could this mean that
the relationship between variety in work and job satisfaction is really spurious,
when participation in decision-making is employed as the test variable? The
answer is that this is unlikely, since it would mean that participation in decision-
making would have to cause variation in the amount of variety in work, which is
a less likely possibility (since technological conditions tend to be the major
influence on variables like work variety). Once again, we have to resort to a
combination of intuitive logic and theoretical reflection in order to discount such
a possibility. We will return to this kind of issue in the context of an examination
of the use of multivariate analysis through correlation and regression.

Using SPSS to perform multivariate analysis
through contingency tables

Taking the Job Survey data, we might want to examine the relationship between
skill and ethnicgp, holding gender constant (i.e. as a test variable). Assuming
that we want cell frequencies and column percentages, the following sequence
would be followed:
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�Statistics �Summarize �Crosstabs…[opens Crosstabs dialog box
shown in Box 8.1]
�skill ������button by Row[s]: [puts skill in box] �ethnicgp ������button
by Column[s]: [puts ethnicgp in box] �gender ������button by bottom
box [puts gender in box] �Cells…[opens Crosstabs: Cell Display sub-
dialog box shown in Box 8.3]
[Ensure Observed in the Counts box has been selected and under
Percentages ensure Column: has been selected] �Continue [closes
Crosstabs: Cell Display subdialog box]
�OK

 
Two contingency tables crosstabulating skill by ethnicgp will be produced—
one for men and one for women. Each table will have ethnicgp going across
(i.e. as columns) and skill going down (i.e. as rows).

MULTIVARIATE ANALYSIS AND CORRELATION

Although the use of contingency tables provides a powerful tool for multivariate
analysis, it suffers from a major limitation, namely that complex analyses with
more than three variables require large samples, especially when the variables
include a large number of categories. Otherwise, there is the likelihood of very
small frequencies in many cells (and indeed the likelihood of many empty cells)
when a small sample is employed. By contrast, correlation and regression can
be used to conduct multivariate analyses on fairly small samples, although their
use in relation to very small samples is limited. Further, both correlation and
regression provide easy-to-interpret indications of the relative strength of
relationships. On the other hand, if one or more variables are nominal,
multivariate analysis through contingency tables is probably the best way
forward for most purposes.

The partial correlation coefficient

One of the main ways in which the multivariate analysis of relationships is
conducted in the social sciences is through the partial correlation coefficient.
This test allows the researcher to examine the relationship between two
variables while holding one other or more variables constant. It allows tests for
spuriousness, tests for intervening variables, and multiple causation to be
investigated. The researcher must stipulate the anticipated logic that underpins
the three variables in question (e.g. test for spuriousness) and can then
investigate the effect of the test variable on the original relationship. Moderated
relationships are probably better examined by computing Pearson’s r for each
category of the test variable (e.g. for both men and women, or young, middle-
aged, and old) and then comparing the r values.
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The partial correlation coefficient is computed by first calculating Pearson’s
r for each of the pairs of possible relationships involved. Thus, if the two
variables concerned are x and y, and t is the test variable (or second independent
variable in the case of investigating multiple causation), the partial correlation
coefficient computes Pearson’s r for x and y, x and t, and y and t. Because of
this, it is necessary to remember that all the restrictions associated with
Pearson’s r apply to variables involved in the possible computation of the partial
correlation coefficient (e.g. variables must be interval).

There are three possible effects that can occur when partial correlation is
undertaken: the relationship between x and y is unaffected by t; the relationship
between x and y is totally explained by t; and the relationship between x and y
is partially explained by t. Each of these three possibilities can be illustrated
with Venn diagrams (see Figure 10.5). In the first case (a), t is only related to x,

Figure 10.5 The effects of controlling for a test variable
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so the relationship between x and y is unchanged, because t can only have an
impact on the relationship between x and y if it affects both variables. In the
second case (b), all of the relationship between x and y (the shaded area) is
encapsulated by t. This would mean that the relationship between x and y when
t is controlled would be zero. What usually occurs is that the test variable, t,
partly explains the relationship between x and y, as in the case of (c) in Figure
10.5. In this case, only part of the relationship between x and y is explained by
t (the shaded area which is overlapped by t). This would mean that the partial
correlation coefficient will be lower than the Pearson’s r for x and y. This is the
most normal outcome of calculating the partial correlation coefficient. If the
first order correlation between x and y when t is controlled is considerably less
than the zero order correlation between x and y, the researcher must decide (if he
or she has not already done so) whether: (a) the x-y relationship is spurious, or
at least largely so; or (b) whether t is an intervening variable between x and y;
or (c) whether t is best thought of as a causal variable which is related to x and
which largely eliminates the effect of x on y. These are the three possibilities
represented in Figures 10.1, 10.2 and 10.4 respectively.

As an example, consider the data in Table 10.7. We have data on eighteen
individuals relating to three variables: age, income and a questionnaire scale
measuring support for the market economy, which goes from a minimum of 5 to
a maximum of 25. The correlation between income and support for the market
economy is 0.64. But could this relationship be spurious? Could it be that age
should be introduced as a test variable, since we might anticipate that older
people are both more likely to earn more and to support the market economy?

Table 10.7 Income, age and support for the market economy (imaginary data)
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This possibility can be anticipated because age is related to income (0.76) and
to support (0.83). When we compute the partial correlation coefficient for
income and support controlling the effects of age, the level of correlation falls to
0.01. This means that the relationship between income and support for the
market economy is spurious. When age is controlled, the relationship falls to
nearly zero. A similar kind of reasoning would apply to the detection of
intervening variables and multiple causation.

Partial correlation with SPSS

Imagine that we want to correlate absence, autonom and satis with each other,
but controlling for income. We might think, for example, that the correlation of
0.73 between autonom and satis (see Table 8.8) might be due to income: if
people have more autonomy, they are more likely to be given higher incomes,
and this may make them more satisfied with their jobs. The following sequence
would be followed:
 

�Statistics �Correlate �Partial [opens Partial Correlations dialog
box shown in Box 10.1]
�absence ������button by Variables: box [puts absence in Variables:
box] �autonom ������button by Variables: box [puts autonom in
Variables: box] �satis ������button by Variables: box [puts satis in
Variables: box] �income ������button by Controlling for: box [puts

Box 10.1 Partial Correlations dialog box
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income in Variables: box] �Two-tailed or One-tailed [depending on
which form of Test of Significance you want and ensure box by Display
actual significance level has been selected]
�Options…[opens Partial Correlations: Options subdialog box
shown in Box 10.2]
� either Exclude cases listwise or Exclude cases pairwise [depending on
which way of handling missing cases you prefer] �Continue [closes
Partial Correlations: Options subdialog box]
�OK

 
The output from this sequence is presented in Table 10.8. Listwise deletions of
missing cases was selected in this instance. A useful facility within the Partial

Box 10.2 Partial Correlations: Options subdialog box

Table 10.8 Partial correlation coefficients
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procedure is that Pearson’s r can also be computed for all the possible pairs of
variables listed in the Partial Correlations dialog box. In the Partial
Correlations: Options subdialog box, simply select Zero-order correlations
so that a tick appears in the box (if one is not there already).

In fact, there is almost no difference between the correlation of 0.73 between
autonom and satis and the 0.70 when these same variables are correlated with
income held constant (see Table 10.8). This suggests that the correlation
between autonom and satis is unaffected by income. The original bivariate
correlation is often referred to as a zero-order correlation (i.e. with no variables
controlled); when one variable is controlled, as in the case of income in this
instance, the resulting correlation is known as a first-order correlation. Still
higher order correlations can be obtained. For example, a second-order
correlation would entail controlling for two variables, perhaps age and income.
To do this within SPSS, simply add the additional variable(s) that you want to
control for to the Controlling for: box in the Partial Correlations dialog box
(Box 10.1).

REGRESSION AND MULTIVARIATE ANALYSIS

Nowadays regression, in the form of multiple regression, is the most widely
used method for conducting multivariate analysis, particularly when more than
three variables are involved. In Chapter 8 we previously encountered regression
as a means of expressing relationships among pairs of variables. In this chapter,
the focus will be on the presence of two or more independent variables.

Consider first of all, a fairly simple case in which there are three variables,
that is, two independent variables. The nature of the relationship between the
dependent variable and the two independent variables is expressed in a similar
manner to the bivariate case explored in Chapter 8. The analogous equation for
mutivariate analysis is:

y=a+b1x1+b2x2+e
 

where x1 and x2 are the two independent variables, a is the intercept, b1 and b2

are the regression coefficients for the two independent variables, and e is an
error term which points to the fact that a proportion of the variance in the
dependent variable, y, is unexplained by the regression equation. As in Chapter
8, the error term is ignored since it is not used for making predictions.

In order to illustrate the operation of multiple regression consider the data in
Table 10.7. The regression equation for these data is:

support=5.913+0.21262age+0.000008income
 

where 5.913 is the intercept (a), 0.21262 is the regression coefficient for the first
independent variable, age (x1), and 0.000008 is the regression coefficient for the
second independent variable, income (x2). Each of the two regression coefficients
estimates the amount of change that occurs in the dependent variable (support
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for the market economy) for a one unit change in the independent variable.
Moreover, the regression coefficient expresses the amount of change in the
dependent variable with the effect of all other independent variables in the
equation partialled out (i.e. controlled). Thus, if we had an equation with four
independent variables, each of the four regression coefficients would express the
unique contribution of the relevant variable to the dependent variable (with the
effect in each case of the three other variables removed). This feature is of
considerable importance, since the independent variables in a multiple regression
equation are almost always related to each other.

Thus, every extra year of a person’s age increases support for the market
economy by 0.21262, and every extra £1000 increases support by 0.000008.
Moreover, the effect of age on support is with the effect of income removed, and
the effect of income on support is with the effect of age removed. If we wanted
to predict the likely level of support for the market economy of someone aged
40 with an income of £17,500, we would substitute as follows:

y=5.913+(0.21262)(40)+(0.000008)(17500)
=5.913+8.5048+0.14
=14.56

 

Thus, we would expect that someone with an age of 40 and an income of
£17,500 would have a score of 14.56 on the scale of support for the market
economy.

While the ability to make such predictions is of some interest to social
scientists, the strength of multiple regression lies primarily in its use as a means
of establishing the relative importance of independent variables to the
dependent variable. However, we cannot say that simply because the regression
coefficient for age is larger than that for income that this means that age is more
important to support for the market economy than income. This is because age
and income derive from different units of measurement that cannot be directly
compared. In order to effect a comparison it is necessary to standardize the units
of measurement involved. This can be done by multiplying each regression
coefficient by the product of dividing the standard deviation of the relevant
independent variable by the standard deviation of the dependent variable. The
result is known as a standardized regression coefficient or beta weight. This
coefficient is easily computed through SPSS. Standardized regression
coefficients in a regression equation employ the same standard of measurement
and therefore can be compared to determine which of two or more independent
variables is the more important in relation to the dependent variable. They
essentially tell us by how many standard deviation units the dependent variable
will change for a one standard deviation change in the independent variable.

We can now take an example from the Job-Survey data to illustrate some of
these points. In the following example we will treat satis as the dependent
variable and routine, autonom, age and income as the independent variables.
These four independent variables were chosen because they are all known to be
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related to satis, as revealed by the relevant correlation coefficients. However, it
is important to ensure that the independent variables are not too highly related
to each other. The Pearson’s r between each pair of independent variables
should not exceed 0.80; otherwise the independent variables that show a
relationship at or in excess of 0.80 may be suspected of exhibiting
multicollinearity. Multicollinearity is usually regarded as a problem because it
means that the regression coefficients may be unstable. This implies that they
are likely to be subject to considerable variability from sample to sample. In any
case, when two variables are very highly correlated, there seems little point in
treating them as separate entities. Multicollinearity can be quite difficult to
detect where there are more than two independent variables, but SPSS provides
some diagnostic tools that will be examined below.

We can now take an example from the Job-Survey data in order to illustrate
some of these points. When the previous multiple regression analysis is carried
out, the following equation is generated:

satis=-1.93582+0.572674autonom+0.001242income
-0.168445routine

 

The variable age was eliminated from the equation by the procedure chosen for
including variables in the analysis (the stepwise procedure described below),
because it failed to meet the program’s statistical criteria for inclusion. If it had
been ‘forced’ into the equation, the impact of age on satis would have been
almost zero. Thus, if we wanted to predict the likely satis score of someone with
an autonom score of 16, an income of £8,000, and a routine score of 8, the
calculation would proceed as follows:

satis=-1.936+(0.573)(16)+(0.001242)(8000)-(0.168)(8)
=-1.936+9.168+9.936-1.344
=15.82

 

However, it is the relative impact of each of these variables on satis that provides
the main area of interest for many social scientists. Table 10.9 presents the
regression coefficients for the three independent variables remaining in the
equation and the corresponding standardized regression coefficients. Although
autonom provides the largest unstandardized and standardized regression
coefficients, the case of income demonstrates the danger of using unstandardized
coefficients in order to infer the magnitude of the impact of independent
variables on the dependent variable. The variable income provides the smallest
unstandardized coefficient (0.001242), but the second largest standardized
coefficient (0.383). As pointed out earlier, the magnitude of an unstandardized
coefficient is affected by the nature of the measurement scale for the variable
itself. The variable income has a range from 0 to 10,500, whereas a variable like
routine has a range of only 4 to 20. When we examine the standardized
regression coefficients, we can see that autonom has the greatest impact on
satis and income the next highest. The variable routine has the smallest impact
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which is negative, indicating that more routine engenders less satis. Finally, in
spite of the fact that the Pearson’s r between age and satis is moderate (0.35),
when the three other variables are controlled, it does not have a sufficient impact
on satis to avoid its exclusion through the program’s default criteria for
elimination.

We can see here some of the strengths of multiple regression and the use of
standardized regression coefficients. In particular, the latter allow us to examine
the effects of each of a number of independent variables on the dependent
variable. Thus, the standardized coefficient for autonom means that for each
one unit change in autonom, there is a standard deviation change in satis of
0.573, with the effects of income and routine on satis partialled out.

Although we cannot compare unstandardized regression coefficients within a
multiple regression equation, we can compare them across equations when the
same measures are employed. We may, for example, want to divide a sample
into men and women and to compute separate multiple-regression equations for
each gender. To do this, we would make use of the Select Cases…procedure.
Thus, for example, in the case of the multiple regression analysis we have been
covering, the equation for men is:

satis=6.771+0.596autonom+0.002income
 

and for women:
 

satis=-0.146+0.678autonom+0.006income-0.179routine
 

Two features of this contrast are particularly striking. First, for men routine has
not met the statistical criteria of the stepwise procedure and therefore is removed
from the equation. Second, the constant is much larger for men than for women.
Such contrasts can provide a useful springboard for further research. Also, it is
potentially important to be aware of such subsample differences, since they may
have implications for the kinds of conclusion that are generated. However, it must
be borne in mind that variables must be identical for such contrasts to be drawn.
An alternative approach would be to include gender as a third variable in the
equation, since dichotomous variables can legitimately be employed in multiple
regression. The decision about which option to choose will be determined by the
points that the researcher wishes to make about the data.

Table 10.9 Comparison of unstandardized and standardized regression coefficients with
satis as the dependent variable
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One of the questions that we may ask is how well the independent variables
explain the dependent variable. In just the same way that we were able to use r2

(the coefficient of determination) as a measure of how well the line of best fit
represents the relationship between the two variables, we can compute the
multiple coefficient of determination (R2) for the collective effect of all of the
independent variables. The R2 value for the equation as a whole is .716, implying
that only 28 per cent of the variance in satis (i.e. 100-716) is not explained by
the three variables in the equation. In addition, SPSS will produce an adjusted
R2. The technical reasons for this variation should not overly concern us here,
but the basic idea is that the adjusted version provides a more conservative
estimate than the ordinary R2 of the amount of variance in satis that is explained.
The adjusted R2 takes into account the number of participants and the number of
independent variables involved. The magnitude of R2 is bound to be inflated by
the number of independent variables associated with the regression equation.
The adjusted R2 corrects for this by adjusting the level of R2 to take account of
the number of independent variables. The adjusted R for the equation as a whole
is .702, which is just a little smaller than the non-adjusted value.

Another aspect of how well the regression equation fits the data is the
standard error of the estimate. This statistic allows the researcher to determine
the limits of the confidence that he or she can exhibit in the prediction from a
regression equation. A statistic that is used more frequently (and which is also
generated in SPSS output) is the standard error of the regression coefficient.
The standard error of each regression coefficient reflects on the accuracy of the
equation as a whole and of the coefficient itself. If successive similar-sized
samples are taken from the population, estimates of each regression coefficient
will vary from sample to sample. The standard error of the regression coefficient
allows the researcher to determine the band of confidence for each coefficient.
Thus, if b is the regression coefficient and s.e. is the standard error, we can be
95 per cent certain that the population regression coefficient will lie between b
+(1.96×s.e.) and b-(1.96×s.e.). This confidence band can be established
because of the properties of the normal distribution that were discussed in
Chapter 6 and if the sample has been selected randomly. Thus, the confidence
band for the regression coefficient for autonom will be between 0.573+(1.96
×0.095857) and 0.573-(1.96×0.095857), i.e. between 0.76 and 0.38. This
confidence band means that we can be 95 per cent confident that the population
regression coefficient for autonom will lie between 0.76 and 0.38. This
calculation can be extremely useful when the researcher is seeking to make
predictions and requires a sense of their likely accuracy.

Statistical signif icance and multiple regression

A useful statistical test that is related to R2 is the F ratio. The F ratio test
generated by SPSS is based on the multiple correlation (R) for the analysis. The
multiple correlation, which is of course the square root of the coefficient of
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determination, expresses the correlation between the dependent variable (satis)
and all of the independent variables collectively (i.e. autonom, routine, age,
and income). The multiple R for the multiple regression analysis under
consideration is 0.846. The F ratio test allows the researcher to test the null
hypothesis that the multiple correlation is zero in the population from which the
sample (which should be random) was taken. For our computed equation,
F=51.280 (see Table 10.10 below) and the significance level is 0.000 (which
means p<0.0005), suggesting that it is extremely improbable that R in the
population is zero.

The calculation of the F ratio is useful as a test of statistical significance for
the equation as a whole, since R reflects how well the independent variables
collectively correlate with the dependent variable. If it is required to test the
statistical significance of the individual regression coefficients, a different test
must be used. A number of approaches to this question can be found. Two
approaches which can be found within SPSS will be proffered. First, a statistic
that is based on the F ratio calculates the significance of the change in the value
of R2 as a result of the inclusion of each additional variable in an equation. Since
each variable is entered into the equation in turn, the individual contribution of
each variable to R2 is calculated and the statistical significance of that
contribution can be assessed. In the computation of the multiple-regression
equation, a procedure for deciding the sequence of the entry of variables into
the equation called stepwise was employed. An explanation of this procedure
will be given in the next section, but in the meantime it may be noted that it
means that each variable is entered according to the magnitude of its
contribution to R2. Thus an examination of the SPSS output (Table 10.10 below)
shows that the variables were entered in the sequence: autonom, income,
routine (age was not entered). The contribution of autonom to R2 was 0.524.
When income was entered, the R2 became 0.682, suggesting that this variable
added 0.158 (0.682-0.524) to R2. The variable routine added a further 0.034
(0.716- 0.682). Clearly, autonom was by far the major contributor to R2. In each
case, an F test of the change in R2 shows that the change was statistically
significant. The significance levels for the R2 changes as a result of the inclusion
of autonom and income were 0.000 in each case; the significance level for the
R2 change as a result of the inclusion of routine was 0.009.

SPSS will produce a test of the statistical significance of individual
regression coefficients through the calculation of a t value for each coefficient
and an associated two-tailed significance test. As the output in Table 10.10
indicates, the significance levels for autonom and income were 0.000, and for
routine 0.009. These are consistent with the previous analysis using the F ratio
and suggest that the coefficients for income, autonom and routine are highly
unlikely to be zero in the population.
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Multiple regression and SPSS

The regression program within SPSS has quite a large range of options (which
can be further enhanced if command syntax is used—see Bryman and Cramer
1994:243–8) and can generate a large amount of output. In this section it is
proposed to simplify these elements as far as possible by dealing with the
multiple-regression equation that was the focus of the preceding section and to
show how this was generated with SPSS. The output is presented in Table 10.10.
The sequence of actions to generate this output is as follows:
 

�Statistics �Regression �Linear…[opens Linear Regression dialog
box shown in Box 10.3]
�satis ������button [puts satis in Dependent: box] �autonom ������button
[puts autonom in Independent[s]: box] �routine ������button [puts
routine in Independent [s]: box] � age � �����button [puts age in
Independent [s]: box] � income ������button [puts income in Inde-
pendent[s]: box] �downward pointing arrow in box by Method:
�Stepwise �Statistics…[opens Linear Regression: Statistics subdi-
alog box shown in Box 10.4]
�Collinearity diagnostics [if not already selected] �R squared

Box 10.3 Linear Regression dialog box
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Box 10.4 Linear Regression: Statistics subdialog box
 
 

change �Continue [closes Linear Regression: Statistics subdialog
box]
�OK

 
In this sequence of actions, R squared change was selected because it provides
information about the statistical significance of the R2 change as a result of the
inclusion of each variable in the equation. Collinearity diagnostics was
selected because it generates helpful information about multicollinearity.

The output in Table 10.10 was produced with cases with missing values
being omitted on a listwise basis, which is the default within SPSS. Thus, a case
is excluded if there is a missing value for any one of the five variables involved
in the equation. Missing values can also be dealt with on a pairwise basis, or the
mean for the variable can be substituted for a missing value. To change the basis
for excluding missing values, click on Options…in the Linear Regression
dialog box (Box 10.3). The Linear Regression: Options subdialog box opens.
In the Missing Values box click on whichever approach to handling missing
values is preferred and then click on Continue. You will then be back in the
Linear Regression dialog box.

The output in Table 10.10 provides a large amount of regression information.
The table with the heading Variables Entered/Removed outlines the order in
which the variables were included in the analysis. Model 1 includes just
autonom, Model 2 includes both autonom and income, and Model 3 includes
all the variables that fulfilled the statistical criteria of the stepwise procedure.
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Table 10.10 SPSS multiple regression output

a. Predictors: (Constant), AUTONOM
b. Predictors: (Constant), AUTONOM, INCOME
c. Predictors: (Constant), AUTONOM, INCOME, ROUTINE
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Table 10.10 Continued
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By implication, age did not meet the criteria. The following elements in the
output relate to aspects of multiple regression that have been covered above:
 
1 Information about the Multiple R, R Square, Adjusted R Square, and the

Standard Error of the Estimate are given in the table headed Model
Summary. This tells us, for example, that the R Square once routine has
followed autonom and income into the equation is 0.716, suggesting that
around 72 per cent of the variance in satis is explained by these three
variables.

2 Also in the Model Summary table is information about the R Square
Change, showing the amount that each variable contributes to R Square,
the F test value of the change, and the associated level of statistical
significance.

3 In the table with the heading ANOVA is an analysis of variance table, which
can be interpreted in the same way as the ANOVA procedure described in
Chapter 7. The analysis of variance table has not been discussed in the
present chapter because it is not necessary to an understanding of regression
for our current purposes. The information in the table that relates to Model 3
provides the F ratio for the whole equation (51.280) which is shown to be
significant at 0.0005 (Sig=.000).

4 In the table with the heading Coefficients are the following important bits
of summary information for the equation as a whole (Model 3): B (the
unstandardized regression coefficient) for each of the three variables and
the constant; Std. Error (the standard error of the regression coefficient)
for each of the three variables and the constant; Beta (the standardized
regression coefficient) for each of the three variables; the t value (t) for
each unstandardized regression coefficient; and the significance of the t
value (Sig.). The information in Table 10.9 was extracted from this section
of the output.

Table 10.10 Continued
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5 Information about multicollinearity is given in the table with the heading
Coefficients. This information can be sought in the column Tolerance for
Model 3. The Tolerance statistic is derived from 1 minus the multiple R for
each independent variable. The multiple R for each independent variable is
made up of its correlation with all of the other independent variables. When
the tolerance is low, the multiple correlation is high and there is the
possibility of multicollinearity. The tolerances for autonom, routine, and
income are 0.713, 0.716, and 0.843 respectively, suggesting that
multicollinearity is unlikely. If the tolerance figures had been close to zero,
multicollinearity would have been a possibility.

 
As we have seen, age never enters the equation because it failed to conform to
the criteria for inclusion operated by the stepwise procedure. This is one of a
number of approaches that can be used in deciding how and whether
independent variables should be entered in the equation and is probably the
most commonly used approach. Although popular, the stepwise method is none
the less controversial because it affords priority to statistical criteria for
inclusion rather than theoretical ones. Independent variables are entered only if
they meet the package’s statistical criteria (though these can be adjusted) and
the order of inclusion is determined by the contribution of each variable to the
explained variance. The variables are entered in steps, with the variable that
exhibits the highest correlation with the dependent variable being entered at the
first step (i.e. autonom). This variable must also meet the program’s criteria for
inclusion in terms of the required F ratio value. The variable that exhibits the
largest part correlation with the dependent variable (with the effect of the first
independent variable partialled out from it) is then entered (i.e. income). This
variable must then meet the F ratio default criteria. The variable age does not
meet the necessary criteria and is therefore not included in the equation. In
addition, as each new variable is entered, variables that are already in the
equation are reassessed to determine whether they still meet the necessary
statistical criteria. If they do not, they are removed from the equation.

PATH ANALYSIS

The final area to be examined in this chapter, path analysis, is an extension of
the multiple regression procedures explored in the previous section. In fact, path
analysis entails the use of multiple regression in relation to explicitly formulated
causal models. Path analysis cannot establish causality; it cannot be used as a
substitute for the researcher’s views about the likely causal linkages among
groups of variables. All it can do, is to examine the pattern of relationships
between three or more variables, but can neither confirm nor reject the
hypothetical causal imagery.

The aim of path analysis is to provide quantitative estimates of the causal
connections between sets of variables. The connections proceed in one direction
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and are viewed as making up distinct paths. These ideas can best be explained
with reference to the central feature of a path analysis—the path diagram. The
path diagram makes explicit the likely causal connections between variables. An
example is provided in Figure 10.6 which takes four variables employed in the
Job Survey: age, income, autonom, and satis. The arrows indicate expected
causal connections between variables. The model moves from left to right
implying causal priority to those variables closer to the left. Each p denotes a
causal path and hence a path coefficient that will need to be computed. The
model proposes that age has a direct effect on satis (p1). But indirect effects of
age on satis are also proposed: age affects income (p5) which in turn affects
satis (p6); age affects autonom (p2) which in turn affects satis (p3); and age
affects autonom (p2) again, but this time affects income (p4) which in turn
affects satis (p6). In addition, autonom has a direct effect on satis (p3) and an
indirect effect whereby it affects income (p4) which in turn affects satis (p6).
Finally, income has a direct effect on satis (p6), but no indirect effects. Thus, a
direct effect occurs when a variable has an effect on another variable without a
third variable intervening between them; an indirect effect occurs when there is
a third intervening variable through which two variables are connected.

In addition, income, autonom and satis have further arrows directed to them
from outside the nexus of variables. These refer to the amount of unexplained
variance for each variable respectively. Thus, the arrow from e1 to autonom
(p7) refers to the amount of variance in autonom that is not accounted for by
age. Likewise, the arrow from e2 to satis (p8) denotes the amount of error aris-
ing from the variance in satis that is not explained by age, autonom and
income. Finally, the arrow from e3 to income (p9) denotes the amount of
variance in income that is unexplained by age and autonom. These error terms

Figure 10.6 Path diagram for satis
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point to the fact that there are other variables that have an impact on autonom
and satis, but which are not included in the path diagram.

In order to provide estimates of each of the postulated paths, path
coefficients are computed. A path coefficient is a standardized regression
coefficient. The path coefficients are computed by setting up three structural
equations, that is equations which stipulate the structure of hypothesized
relationships in a model. In the case of Figure 10.6, three structural equations
will be required—one for autonom, one for satis and one for income. The three
equations will be:

(1) autonom=x1age+e1

(2) satis=x1age+x2autonom+x3income+e2

(3) income=x1age+x2autonom+e3

The standardized coefficient for age in (1) will provide p2. The coefficients for
age, autonom and income in (2) will provide p1, p3 and p6 respectively. Finally,
the coefficients for age and autonom in (3) will provide p5 and p4 respectively.

Thus, in order to compute the path coefficients, it is necessary to treat the
three equations as multiple regression equations and the resulting standardized
regression coefficients provide the path coefficients. The intercepts in each case
are ignored. The three error terms are calculated by taking the R2 for each
equation away from 1 and taking the square root of the result of this subtraction.

In order to complete all of the paths in Figure 10.6, all of the path coefficients
will have to be computed. The stepwise procedure should therefore not be used
because if certain variables do not enter the equation due to the program’s
default criteria for inclusion and exclusion, no path coefficients can be
computed for them. In SPSS, instead of choosing Stepwise in the Method: box
(see Box 10.3), choose Enter which will force all variables into the equation.

Therefore, to compute equation (1) the following steps would need to be
followed (assuming that listwise deletion of missing cases has already been
selected):
 

�Statistics �Regression �Linear…[opens Linear Regression dialog
box shown in Box 10.3]
�autonom ������button [puts autonom in Dependent: box] �age
������button [puts age in Independent[s]: box] �downward pointing
arrow in box by Method: �Enter �OK

 
For equation (2):
 

�Statistics �Regression �Linear…[opens Linear Regression dialog
box shown in Box 10.3]
�satis ������button [puts satis in Dependent: box] �age ������button [puts
age in Independent[s]: box] �autonom ������button [puts autonom in
Independent[s]: box] � income � �����button [puts income in
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Independent[s]: box] �downward pointing arrow in box by Method:
�Enter �OK

 
For equation (3):
 

�Statistics �Regression �Linear…[opens Linear Regression dialog
box shown in Box 10.3]
�income ������button [puts income in Dependent: box] �age ������but-
ton [puts age in Independent[s]: box] �autonom ������button [puts
autonom in Independent[s]: box] �downward pointing arrow in box by
Method: �Enter �OK

 
When conducting a path analysis, the critical issues to search for in the SPSS
output are the standardized regression coefficient for each variable (under the
heading Beta in the last section of the table) and the R2 (for the error term
paths). If we take the results of the third equation, we find that the standardized
coefficients for autonom and age are 0.215 and 0.567 respectively and the R2 is
0.426. Thus for p4, p5 and p9 in the path diagram (Figure 10.6) we substitute
0.22, 0.57, and 0.76 (the latter being the square root of 1-0.42604). All of the
relevant path coefficients have been inserted in Figure 10.7.

Since the path coefficients are standardized, it is possible to compare them
directly. We can see that age has a very small negative direct effect on satis, but
it has a number of fairly pronounced positive indirect effects on satis. In
particular, there is a strong sequence that goes from age to income (p5=0.57) to
satis (p6=0.47).

Many researchers recommend calculating the overall impact of a variable like
age on satis. This would be done as follows. We take the direct effect of age

Figure 10.7 Path diagram for satis with path coefficients
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(-0.08) and add to it the indirect effects. The indirect effects are gleaned by
multiplying the coefficients for each path from age to satis. The paths from age to
income to satis would be calculated as (0.57)(0.47)=0.27. For the paths from age
to autonom to satis we have (0.28)(0.58)=0.16. Finally, the sequence from age to
autonom to income to satis yields (0.28)(0.22)(0.47)= 0.03. Thus the total
indirect effect of age on satis is 0.27+0.16+0.03= 0.46. For the total effect of age
on satis, we add the direct effect and the total indirect effect, i.e. -0.08+0.46=0.38.
This exercise suggests that the indirect effect of age on satis is inconsistent with its
direct effect, since the former is slightly negative and the indirect effect is positive.
Clearly, an appreciation of the intervening variables income and autonom is
essential to an understanding of the relationship between age and satis.

The effect of age on satis could be compared with the effect of other vari-
ables in the path diagram. Thus, the effect of autonom is made up of the direct
effect (0.58) plus the indirect effect of autonom to income to satis, i.e.
0.58+(0.22)(0.47), which equals 0.68. The effect of income on satis is made
up only of the direct effect, which is 0.47, since there is no indirect effect from
income to satis. Thus, we have three effect coefficients as they are often
called (e.g. Pedhazur 1982)—0.38, 0.68, and 0.47 for age, autonom and
income respectively—implying that autonom has the largest overall effect on
satis.

Sometimes, it is not possible to specify the causal direction between all of the
variables in a path diagram. In Figure 10.8 autonom and routine are deemed to
be correlates; there is no attempt to ascribe causal priority to one or the other.
The link between them is indicated by a curved arrow with two heads. Each
variable has a direct effect on absence (p5 and p4). In addition, each variable
has an indirect effect on absence through satis: autonom to satis (p1) and satis
to absence (p3); routine to satis (p2) and satis to absence (p3). In order to
generate the necessary coefficients, we would need the Pearson’s r for autonom
and routine and the standardized regression coefficients from two equations:
 

Figure 10.8 Path diagram for absence
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(1) satis=a+x1autonom+x2routine+e1

(2) absence=a+x1autonom+x2routine+x3satis+e2

We could then compare the total causal effects of both autonom, routine and
satis. The total effect would be made up of the direct effect plus the total
indirect effect. The total effect of each of these three variables on absence
would be:

Total effect of autonom=(p5)+(p1)(p3)
Total effect of routine=(p4)+(p2)(p3)
Total effect of satis=p3

These three total effects can then be compared to establish which has the
greatest overall effect on absence. However, with complex models involving a
large number of variables, the decomposition of effects using the foregoing
procedures can prove unreliable and alternative methods have to be employed
(Pedhazur 1982).

Path analysis has become a popular technique because it allows the relative
impact of variables within a causal network to be estimated. It forces the
researcher to make explicit the causal structure that is believed to undergird
the variables of interest. On the other hand, it suffers from the problem that it
cannot confirm the underlying causal structure. It tells us what the relative
impact of the variables upon each other is, but cannot validate that causal
structure. Since a cause must precede an effect, the time order of variables
must be established in the construction of a path diagram. We are forced to
rely on theoretical ideas and our common sense notions for information about
the likely sequence of the variables in the real world. Sometimes these
conceptions of time ordering of variables will be faulty and the ensuing path
diagram will be misleading. Clearly, while path analysis has much to offer, its
potential limitations should also be appreciated. In this chapter, it has only
been feasible to cover a limited range of issues in relation to path analysis and
the emphasis has been upon the use of examples to illustrate some of the
relevant procedures, rather than a formal presentation of the issues. Readers
requiring more detailed treatments should consult Land (1969), Pedhazur
(1982) and Davis (1985).

EXERCISES

1. A researcher hypothesizes that women are more likely than men to support
legislation for equal pay between the sexes. The researcher decides to
conduct a social survey and draws a sample of 1,000 individuals among whom
men and women are equally represented. One set of questions asked directs
the respondent to indicate whether he or she approves of such legislation.
The findings are provided in Table 10E.1:
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Is the researcher’s belief that women are more likely than men to support
equal pay legislation confirmed by the data in Table 10E.1?

2. Following on from Question 1, the researcher controls for age and the results
of the analysis are provided in Table 10E.2. What are the implications of this
analysis for the researcher’s view that men and women differ in support for
equal pay legislation?

Table 10E.2 The relationship between approval of equal pay
legislation and gender holding age constant

3. What SPSS procedure would be required to examine the relationship
between ethnicgp and commit, controlling for gender? Assume that you
want ethnicgp going across that table and that you need both frequency
counts and column percentages.

4. A researcher is interested in the correlates of the number of times that
people attend religious services during the course of a year. On the
basis of a sample of individuals, he f inds that income correlates fairly
well with frequency of attendance (Pearson’s r=0.59). When the
researcher controls for the effects of age, the partial correlation
coeff icient is found to be 0.12. Why has the size of the correlation fallen
so much?

5. What SPSS procedure would you need to correlate income and satis,
controlling for age? Assume that you want to display actual significance levels
and that missing cases are to be deleted listwise.

6. Consider the following regression equation and other details:

Table 10E.1 The relationship between approval of equal
pay legislation and gender
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y=7.3+2.3x1+4.1x2-1.4x3 R
2=0.78 F=21.43, p<0.01

(a) What value would you expect y to exhibit if x1=9, x2=22, and x3= 17?
(b) How much of the variance in y is explained by x1, x2, and x3?
(c) Which of the three independent variables exhibits the largest effect

on y?
(d) What does the negative sign for x3 mean?

7. What SPSS procedure would you need to provide the data for the multiple
regression equations on p. 268? In considering the commands, you should
bear in mind that the information is required for a path analysis.

8. Turning to the first of the two equations referred to in Question 7 (i.e. the
one with satis as the dependent variable):

(a) How much of the variance in satis do the two variables account for?
(b) Are the individual regression coefficients for autonom and routine

statistically significant?
(c) What is the standardized regression coefficient for routine?

9. Examine Figure 10.8. Using the information generated for Questions 9 and
10, which variable has the largest overall effect on absence—is it autonom,
routine or satis?

 
 



Chapter 11

Aggregating variables
Exploratory factor analysis

Many of the concepts we use to describe human behaviour seem to consist of a
number of different aspects. Take, for example, the concept of job satisfaction.
When we say we are satisfied with our job, this statement may refer to various
feelings we have about our work, such as being keen to go to it every day, not
looking for other kinds of jobs, being prepared to spend time and effort on it,
and having a sense of achievement about it. If these different components
contribute to our judgement of how satisfied we are with our job, we would
expect them to be interrelated. In other words, how eager we are to go to work
should be correlated with the feeling of accomplishment we gain from it, and so
on. Similarly, the concept of job routine may refer to a number of
interdependent characteristics such as how repetitive the work is, how much it
makes us think about what we are doing, the number of different kinds of tasks
we have to carry out each day, and so on. Some people may enjoy repetitive
work while others may prefer a job which is more varied. If this is the case, we
would expect job satisfaction to be unrelated to job routine. To determine this,
we could ask people to describe their feelings about their job in terms of these
characteristics and see to what extent those aspects which reflect satisfaction are
correlated with one another and are unrelated to those which represent routine.
Characteristics which go together constitute a factor and factor analysis refers
to a number of related statistical techniques which help us to determine them.

These techniques are used for three main purposes. First, as implied above,
they can assess the degree to which items, such as those measuring job satisfaction
and routine, are tapping the same concept. If people respond in similar ways to
questions concerning job satisfaction as they do to those about job routine, this
implies that these two concepts are not seen as being conceptually distinct by
these people. If, however, their answers to the job-satisfaction items are unrelated
to their ones to the job-routine items, this suggests that these two feelings can be
distinguished. In other words, factor analysis enables us to assess the factorial
validity of the questions which make up our scales by telling us the extent to
which they seem to be measuring the same concepts or variables.

Second, if we have a large number of variables, factor analysis can determine
the degree to which they can be reduced to a smaller set. Suppose, for example,
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we were interested in how gender and ethnic group were related to attitudes
towards work. To measure this, we generate from our own experience twelve
questions similar to those used in the Job Survey to reflect the different feelings
we think people hold towards their job. At this stage, we have no idea that they
might form three distinct concepts (i.e. job satisfaction, autonomy, and routine).
To analyze the relationship of gender and ethnic group to these items, we would
have to conduct twelve separate analyses. There would be two major
disadvantages to doing this. First, it would make it more difficult to understand
the findings since we would have to keep in mind the results of twelve different
tests. Second, the more statistical tests we carry out, the more likely we are to
find that some of them will be significant by chance. It is not possible to
determine the likelihood of this if the data come from the same sample.

The third use to which factor analysis has been put is related to the previous
one but is more ambitious in the sense that it is aimed at trying to make sense of
the bewildering complexity of social behaviour by reducing it to a more limited
number of factors. A good example of this is the factor analytic approach to the
description of personality by psychologists such as Eysenck and Cattell (for
example, Eysenck and Eysenck 1969; Cattell 1973). There are a large number
of ways in which the personalities of people vary. One indication of this are the
hundreds of words describing personality characteristics which are listed in a
dictionary. Many of these terms seem to refer to similar aspects. For example,
the words ‘sociable’, ‘outwardgoing’, ‘gregarious’, and ‘extroverted’ all
describe individuals who like the company of others. If we ask people to
describe themselves or someone they know well in terms of these and other
words, and we factor analyze this information, we will find that these
characteristics will group themselves into a smaller number of factors. In fact, a
major factor that emerges is one called sociability or extroversion. Some people,
then, see factor analysis as a tool to bring order to the way we see things by
determining which of them are related and which of them are not.

Two uses of factor analysis can be distinguished. The one most commonly
reported is the exploratory kind in which the relationships between various
variables are examined without determining the extent to which the results fit
a particular model. Confirmatory factor analysis, on the other hand, compares
the solution found against a hypothetical one. For example, if we expected the
four items measuring job satisfaction in the Job Survey to form one factor,
then we could assess the degree to which they did so by comparing the results
of our analysis with a hypothetical solution in which this was done perfectly.
Although there are techniques for making these kinds of statistical
comparisons (for example, Bentler 1993; Jöreskog and Sörbom 1989), they
are only available as a separate program. Consequently, we shall confine our
discussion to the exploratory use of factor analysis. We will illustrate its use
with an analysis of the job satisfaction and routine items in the Job Survey, in
which we will describe the decisions to be made, followed by the commands
to carry these out.
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CORRELATION MATRIX

The initial step is to compute a correlation matrix for the eight items which
make up the two scales of job satisfaction and routine. If there are no significant
correlations between these items, then this means that they are unrelated and
that we would not expect them to form one or more factors. In other words, it
would not be worthwhile to go on to conduct a factor analysis. Consequently,
this should be the first stage in deciding whether to carry one out. The
correlation matrix for these items, together with their significance levels, is
presented in Table 11.1. All but one of the items are significantly correlated at
less than the 0.05 level, either positively or negatively, with one another, which
suggests that they may constitute one or more factors.

SAMPLE SIZE

Second, the reliability of the factors emerging from a factor analysis depends on
the size of the sample, although there is no consensus on what the size should
be. There is agreement, however, that there should be more participants than
variables. Gorsuch (1983), for example, has proposed an absolute minimum of
five participants per variable and not less than 100 individuals per analysis.
Although factor analysis can be carried out on samples smaller than this to
describe the relationships between the variables, not much confidence should be
placed that these same factors would emerge in a second sample. Consequently,
if the main purpose of a study is to find out what factors underlie a group of
variables, it is essential that the sample should be sufficiently large to enable this
to be done reliably.

PRINCIPAL COMPONENTS OR FACTORS?

The two most widely used forms of factor analysis are principal components
and factor analysis (called principal-axis factoring in SPSS). There are also

Table 11.1 Correlation and significance-level matrices for items (Job Survey)
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other kinds of methods which are available on SPSS such as alpha, image, and
maximum likelihood factoring but these are used much less frequently. Because
of this, and the need to keep the discussion brief, we will outline only the first
two techniques. When talking about both these methods we shall refer to them
collectively as factor analysis, as is the usual convention. However, when
specifically discussing the method of factor analysis we shall call it principal-
axis factoring, as SPSS does, to distinguish it from the general method.

Factor analysis is primarily concerned with describing the variation or
variance which is shared by the scores of people on three or more variables.
This variance is referred to as common variance and needs to be distinguished
from two other kinds of variance. Specific variance describes the variation
which is specific or unique to a variable and which is not shared with any other
variable. Error variance, on the other hand, is the variation due to the
fluctuations which inevitably result from measuring something. If, for example,
you weigh yourself a number of times in quick succession, you will find that the
readings will vary somewhat, despite the fact that your weight could not have
changed in so short a time. These fluctuations in measurement are known as
error variance. So the total variation that we find in the scores of an instrument
(such as an item or test) to assess a particular variable can be divided or
partitioned into common, specific and error variance.

Total variance=Common variance+Specific variance+Error variance

Since factor analysis cannot distinguish specific from error variance, they are
combined to form unique variance. In other words, the total variance of a test
consists of its common and its unique variance.

This idea may be illustrated with the relationship between three variables, x,
y, and z, as displayed in the Venn diagram in Figure 11.1. The overlap between
any two of the variables and all three of them represents common variance (the
shaded areas), while the remaining unshaded areas constitute the unique
variance of each of the three variables.

The difference between principal-components analysis and principal-axis
factoring lies essentially in how they handle unique variance. In principal-
components analysis, all the variance of a score or variable is analyzed,
including its unique variance. In other words, it is assumed that the test used to
assess the variable is perfectly reliable and without error. In principal-axis
factoring, only the variance which is common to or shared by the tests is
analyzed—that is, an attempt is made to exclude unique variance from the
analysis. Since principal-components analysis examines the total variance of a
test, this is set at 1, while for principal-axis factoring it varies between 0 and 1.
The variance of a test to be explained is known as its communality. Tables 11.2
and 11.3 show the SPSS output for the communalities of the principal-
components and principal-axes analyses respectively. The values of the
communalities for the principal components are Is while those for the principal
axes vary from 0.381 (for the first factor) to 0.765 (for the fifth factor).
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Figure 11.1 Common and unique variance

Table 11.2 Communalities of principal components (Job Survey)

Table 11.3 Communalities of principal axes (Job Survey)
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In both these methods, the first component or axis that is extracted accounts
for the largest amount of variance shared by the tests. The second factor consists
of the next largest amount of variance which is not related to or explained by the
first one. In other words, these two factors are unrelated or orthogonal to one
another. The third factor extracts the next largest amount of variance, and so on.
There are as many factors as variables, although the degree of variance which is
explained by successive factors becomes smaller and smaller. In other words,
the first few factors are the most important ones.

The SPSS output showing the initial factors produced by a principal-
components analysis of the job satisfaction and routine items and the amount of
the variance they account for (their eigenvalue) is presented in Table 11.4. The
variance accounted for by the first factor is 4.248 or 53.1 per cent of the total
variance. The total variance explained by the eight factors is simply the sum of
their eigenvalues, which in this case is 8. The proportion of variance accounted
for by any one factor is its eigenvalue divided by the sum of the eigenvalues,
which is multiplied by 100 to convert it to a percentage. Thus, for example, the
proportion of variance due to the first factor is about 4.25/8 or 0.531, which
multiplied by 100 equals 53.1.

The output for the initial factors extracted by principal-axis factoring is
exactly the same as that shown in Table 11.4.

NUMBER OF FACTORS TO BE RETAINED

Since the object of factor analysis is to reduce the number of variables we have
to handle, this would not be achieved if we used all of them. Consequently, the
next step is to decide how many factors we should keep. This really is a question
of how many of the smaller factors we should retain, since we would obviously
keep the first few which explain most of the variance. There are two main
criteria used for deciding which factors to exclude. The first, known as Kaiser’s
criterion, is to select those factors which have an eigenvalue of greater than one.

Table 11.4 Initial principal components and their variance (job Survey)

a. When components are correlated, sums of squared loadings cannot be added to obtain a total
variance.
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SPSS does this by default unless it receives instructions to do otherwise. Since
the total variance that any one variable can have has been standardized as one,
what this means, in effect, is that a factor which explains less variance than a
single variable is excluded.

The second method is the graphical scree test proposed by Cattell (1966). In
this method, a graph is drawn of the descending variance accounted for by the
factors initially extracted. The one produced by SPSS for the factors described
in Table 11.4 is depicted in Figure 11.2. The plot typically shows a break
between the steep slope of the initial factors and the gentle one of the later
factors. The term ‘scree’, in fact, is a geological one for describing the debris
found at the bottom of a rocky slope and implies that these factors are not very
important. The factors to be retained are those which lie before the point at
which the eigenvalues seem to level off. This occurs after the first two factors in
this case, both of which incidentally have eigenvalues of greater than one. In
other words, both criteria suggest the same number of factors in this example.
The choice of criterion may depend on the size of the average communalities
and the number of variables and participants. The Kaiser criterion has been
recommended for situations where the number of variables is less than 30 and
the average communality is greater than 0.70 or when the number of
participants is greater than 250 and the mean communality is greater than or
equal to 0.60 (Stevens 1996). If the number of factors to be extracted differs
from that suggested by the Kaiser criterion, then this has to be specified with the
appropriate SPSS option.

Figure 11.2 Scree test of eigenvalues (Job Survey)
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The two principal-components factors are shown in Table 11.5, while the two
principal-axis ones are displayed in Table 11.6. The relationship between each
item or test and a factor is expressed as a correlation or loading.

The items have been listed, by request, in terms of the size of their loadings
on the factor to which they are most closely related. For example, the item
routine1 loads most highly on the first of the two factors in both analyses,
although its correlation with them varies somewhat. In other words, the two
analyses produce somewhat different solutions. All but one (satis3) of the eight
items correlate most highly with the first factor.

ROTATION OF FACTORS

The first factors extracted from an analysis are those which account for the max-
imum amount of variance. As a consequence, what they represent might not be

Table 11.5 Item loadings on first two principal components (Job Survey)

Table 11.6 Item loadings on first two principal axes (Job Survey)

Extraction Method: Principal Axis Factoring,
a. 2 factors extracted. 8 iterations required.
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easy to interpret since items will not correlate as highly with them as they might.
In fact, most of the items will fall on the first factor, although their correlations
with it may not be that high. In order to increase the interpretability of factors,
they are rotated to maximize the loadings of some of the items. These items can
then be used to identify the meaning of the factor. A number of ways have been
developed to rotate factors, some of which are available on SPSS. The two most
commonly used methods are orthogonal rotation, which produces factors which
are unrelated to or independent of one another, and oblique rotation, in which
the factors are correlated.

There is some controversy as to which of these two kinds of rotation is the
more appropriate. The advantage of orthogonal rotation is that the information
the factors provide is not redundant, since a person’s score on one factor is
unrelated to their score on another. For example, if we found two orthogonal
factors which we interpreted as being job satisfaction and routine, then what this
means is that in general how satisfied people are with their job is not related to
how routine they see it as being. The disadvantage of orthogonal rotation, on the
other hand, is that the factors may have been forced to be unrelated, whereas in
real life they may be related. In other words, an orthogonal solution may be more
artificial and not necessarily an accurate reflection of what occurs naturally in the
world. This may be less likely with oblique rotation, although it should be borne
in mind that the original factors in an analysis are made to be orthogonal.

ORTHOGONAL ROTATION

An orthogonal rotation of the two principal-components factors is shown in
Table 11.7. The method for doing this was varimax. In terms of the orthogonally
rotated solution, five and not seven items load on the first factor, while three of
them correlate most highly with the second one. The items which load most

Table 11.7 Item loadings on orthogonally rotated factors (Job Survey)
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strongly on the first factor are listed or grouped together first and are ordered in
terms of the size of their correlations. The items which correlate most strongly
with the second factor form the second group on the second factor. If there had
been a third factor, then the items which loaded most highly on it would
constitute the third group on the third factor, and so on. Although the data are
made up, if we obtained a result like this with real data it would suggest that the
way in which people answered the job-routine items was not related to the way
they responded to the job-satisfaction ones, with the exception of satis2. In
other words, the two groups of items seem to be factorially distinct. The
loadings of items on factors can be positive or negative: for example, the satis3
and satis1 items have a negative correlation with the second factor while the
other items are positively related to it. Note that the value -3.74E-02 should be
read as -0.0374. The last value (-02) indicates that the decimal point in the first
value (-3.74) should be moved two places to the left (-0.0374).

In general, the meaning of a factor is determined by the items which load
most highly on it. Which items to ignore when interpreting a factor is arguable.
It may not be appropriate to use the significance level of the factor loading since
this depends on the size of the sample. In addition, the appropriate level to use
is complicated by the fact that a large number of correlations have been
computed on data which come from the same participants. Conventionally,
items or variables which correlate less than 0.3 with a factor are omitted from
consideration since they account for less than 9 per cent of the variance and so
are not very important. An alternative criterion to use is the correlation above
which no item correlates highly with more than one factor. The advantage of
this rule is that factors are interpreted in terms of items unique to them.
Consequently, their meaning should be less ambiguous. According to these two
rules, factor 1 comprises all four of the routine items whereas factor 2 contains
only satis3 and satis4. However, the use of these two conventions in
conjunction engenders a highly stringent set of criteria for deciding which
variables should be included on which factors. Many researchers ignore the
second convention and emphasize all loadings in excess of 0.3 regardless of
whether any variables are thereby implicated in more than one factor.

The amount or percentage of variance that each of the orthogonally rotated
factors accounts for is not given by SPSS but can be easily calculated. To work
out the amount of variance explained by a factor, square the correlations of each
of its items and add them together. If we do this for the first factor, the amount of
variance is about 3.26. The percentage of variance is simply this amount divided
by the number of items (3.26/8=0.41) and multiplied by 100 (i.e. 41 per cent).

OBLIQUE ROTATION

Oblique rotation produced by the oblimin method in SPSS gives three matrices.
The first, a pattern matrix, consists of correlations between the variables and the
factors. The second, the structure matrix, is made up of weights which reflect
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the unique variance each factor contributes to a variable. This is the matrix
which is generally used to interpret the factors. The oblique factors shown in
Table 11.8 are from this matrix for the principal components analysis. The
results are similar to the orthogonal rotation except that the loadings between
the items and factors are higher.

The third matrix shows the correlations between the factors and is presented
in Table 11.9. Since they are moderately intercorrelated (-0.45), oblique rotation
may be more appropriate in this case. It is difficult to estimate the amount of
variance accounted for by oblique factors since the variance is shared between
the correlated factors. Thus, for example, as the two factors are correlated in this
instance, part of the variance of the first factor would also be part of the second.

SPSS FACTOR ANALYSIS PROCEDURE

The following procedure was used to compute the output for the
principalcomponents analysis:
 

�Statistics �Data Reduction �Factor…[opens Factor Analysis
dialog box shown in Box 11.1]
�satis1 to satis4 ��button [puts satis1 to satis4 under Variables:]

Table 11.8 Item loadings on obliquely rotated factors (Job Survey)

Table 11.9 Correlations between oblique factors (Job Survey)
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Box 11.1 Factor Analysis dialog box

Box 11.2 Factor Analysis: Descriptives subdialog box
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�routine1 to routine4 ��button �Descriptives…[opens Factor
Analysis: Descriptives subdialog box shown in Box 11.2]
�Coefficients [for correlation coefficients as shown in Table 11.1]
�Significance levels �Continue [closes Factor Analysis: Descriptives
subdialog box]
�Extraction…[opens Factor Analysis: Extraction subdialog box
shown in Box 11.3]
�down-pointing button and Principal axis factoring if Principal

Box 11.3 Factor Analysis: Extraction subdialog box

Box 11.4 Factor Analysis: Rotation subdialog box
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Box 11.5 Factor Analysis: Options subdialog box

components default option not wanted �Scree plot [as shown in Figure
11.2] �Number of factors: and type number of factors if different from
default option of Kaiser’s criterion � Maximum Iterations for
Convergence: and type number if default of 25 not wanted �Continue
[closes Factor Analysis: Extraction subdialog box]
�Rotation…[opens Factor Analysis: Rotation subdialog box shown in
Box 11.4]
�Direct Oblimin if Varimax default not wanted �Continue [closes
Factor Analysis: Rotation subdialog box]
�Options…[opens Factor Analysis: Options subdialog box shown in
Box 11.5]
�Sorted by size [highest loadings shown first] �Continue [closes Factor
Analysis: Options subdialog box]
�OK

 
It is sometimes necessary to increase the number of iterations required to arrive
at a factor solution. An iteration may be thought of as an attempt to estimate the
total common variance of a variable or item to be accounted for by the main
factors. Successive attempts are made (iterations) until the estimates change
little. If we found that the default maximum number of 25 iterations was
insufficient to produce an acceptable solution, we could increase it to, say, 50.

EXERCISES

1. You have developed a questionnaire to measure anxiety which consists of
ten items. You want to know whether the items constitute a single factor. To
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find this out, would it be appropriate to carry out a factor analysis on the
ten items?

2. If you were to carry out a factor analysis on ten items or variables, what
would be the minimum number of participants or cases you would use?

3. What is the unique variance of a variable?

4. How does principal-components analysis differ from principal-axis factoring?

5. How many factors are there in a factor analysis?

6. Which factor accounts for most of the variance?

7. Why are not all the factors extracted?

8. Which criterion is most commonly used to determine the number of
factors to be extracted?

9. What is meant by a loading?

10. Why are factors rotated?

11. What is the advantage of orthogonal rotation?

12. Is it possible to calculate the amount of variance explained by oblique
factors?

 



Answers to exercises

CHAPTER 1

1. These forms of analysis concentrate upon one, two and three or more variables
respectively.

2. It is necessary in order to ensure that members of experimental and control groups are
as alike as possible. If members of the experimental and control groups are alike, any
contrasts that are found between the two groups cannot be attributed to differences in
the membership of the two groups; instead, it is possible to infer that it is the
experimental stimulus (Exp) that is the source of the differences between the two
groups.

3. The reasoning is faulty. First, those who read the quality dailies and those who read
the tabloids will differ from each other in ways other than the newspapers that they
read. In other words, people cannot be treated as though they have been randomly
assigned to two experimental treatments—qualities and tabloids. Second, the causal
inference is risky because it is possible that people with a certain level of political
knowledge are more likely to read certain kinds of newspaper, rather than the type of
newspaper affecting the level of political knowledge.

CHAPTER 2
 

1. Since not all possible religious affiliations have been included (e.g. Baha’i,
Zoroastrianism), it is important to have a further option in which these can be placed.
This can be called ‘Other’.

2. The most convenient way of coding this information is to assign a number to each
option, such as 1 for agnostic, 2 for atheist, and so on.

3. This information should be coded as missing. In other words, you need to assign a
number to data that are missing.

4. If this happened very infrequently, then one possibility would be to code this kind of
response as missing. Since the answer is not truly missing, an alternative course of
action would be to record one of the two answers. There are a number of ways this
could be done. First, the most common category could be chosen. Second, one of the
two answers could be selected at random. Third, using other information we could try
to predict which of the two was the most likely one. If there were a large number of
such multiple answers, then a separate code could be used to signify them.

286
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5. If we provide an identification number for each participant and if agnostics are coded
as 1 and atheists as 2, your data file should look something like this:

01 1 25
02 1 47
03 2 33
04 2 18

In other words, the information for the same participant is placed in a separate row,
while the information for the same variable is placed in the same column(s).

6. Two columns as we have to include the ‘Other’ category.

7. Through a Define Variable procedure.

8. There are usually no more than 80 columns to a line.

9. Eight characters.

CHAPTER 3

1.

�Data � Select Cases… � If condition is satisfied � If… � ethnicgp
��button �= �4 �Continue �OK   

2.

gender=2 & age <=25 & (ethnicgp=2 | ethnicgp=4)   

3.

satis1 <0 & satis2 <0 & satis3 <0 & satis4 <0   

4.

�Transform �Recode �Into Same Variables… �skill �Old and New Values
… �1 [in box entitled Value: in Old Value section] �box called Value: in New
Value section and type 1 �Add �2 [in box entitled Value: in Old Value section]
�box called Value: in New Value section and type 1 �Add �3 [in box entitled
Value: in Old Value section] �box called Value: in the New Value section and type
2 �Add �4 [in box entitled Value: in Old Value section] �box called Value: in
New Value section and type 2 �Add �Continue �OK   

5.

�Transform �Recode �Into Different Variables… �income [in box entitled
Numeric Variable -> Output Variable:] �in box entitled Name: type incomec
�Change �Old and New Values… �Range: and type 1 [in first box] �second
box and type 4999 �box called Value: in New Value section and type 1 �Add
�Range: and type 5000 [in first box] �second box and type 9999 �box called
Value: in New Value section and type 2 �Add �Range: and type 10000 �box
called Value: in the New Value section and type 3 �Add �Copy old value[s]
�Add �Continue �OK   

6.
�Transform �Compute…(in box entitled Target Variable: type days �weeks
��button [puts weeks into box entitled Numeric Expression:] �* �7 �OK   
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CHAPTER 4

1. (b)

2. It forces the researcher to think about the breadth of the concept and the possibility
that it comprises a number of distinct components.

3. (a) dichotomous
(b) nominal
(c) ordinal
(d) interval/ratio

4. Interval.

5. External reliability.

6.

�Statistics �Scale �Reliability Analysis… �autonom1, autonom2, autonom3
and autonom4 while holding down Ctrl key ��button [puts autonom1, autonom2,
autonom3 and autonom4 in Items: box] �Model: �Alpha in drop-down menu
�OK   

7. Internal reliability.

8. (a)

CHAPTER 5
 

1.

�Statistics �Summarize �Frequencies… �prody ��button �OK   

2. 17.4 per cent.

3. The value of 2,700 for case number 20 is an outlier and would distort the size of both
the mean and the range.

4. (c)

5.

�Statistics �Summarize �Explore… �satis ��button by Dependent List
�OK   

6. 6.

7. It takes all values in a distribution into account and is easier to interpret in relation to
the mean which is more commonly employed as a measure of central tendency than
the median.

8. Between 4.23 and 17.446. Some 95.44 per cent of cases will probably lie within this
range.  

CHAPTER 6

1. A representative sample is one which accurately mirrors the population from which
it was drawn. A random sample is a type of sample which aims to enhance the
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likelihood of achieving a representative sample. However, due to a number of factors
(such as sampling error or non-response), it is unlikely that a random sample will be
a representative sample.

2. Because it enhances the likelihood that the groups (i.e. strata) in the population will
be accurately represented.

3. When a population is highly dispersed, the time and cost of interviewing can be
reduced by multistage cluster sampling.

4. No. Quite aside from the problems of non-response and sampling error, it is unlikely
that the Yellow Pages provide a sufficiently complete and accurate sampling frame.

5. Since there are only two possible outcomes (heads and tails) and the coin was flipped
four times, the probability of finding the particular sequence you did would be one
out of sixteen (2×2×2×2) or 0.0625.

6. No. Even if the coin was unbiased, you would still have a one in sixteen chance that
you would obtain four heads in a row.

7. The probability of obtaining any sequence of two heads and two tails is six out of
sixteen or 0.375 since six such sequences are possible. In other words, this is the
most likely outcome.

8. Since there are only two outcomes to each question (true and false), the most likely
score for someone who has no general knowledge is 50 points (0.5×100), which is the
mean of the probability distribution.

9. Once again, there are only two outcomes for each person (butter or margarine). The
probability of guessing correctly is 0.5. Since fifty people took part, the mean or most
likely number of people guessing correctly would be twenty-five.

10. The null hypothesis would be that there was no difference in talkativeness between
men and women.

11. The non-directional hypothesis would be that men and women differ in talkativeness.
In other words, the direction of the difference is not stated.

CHAPTER 7

1. A chi-square test should be used since there are two unrelated categorical variables
(i.e. shop and type of book) and the number of books sold in any one category is
fixed. In other words, the number of books in this case is a frequency count.

2. The null hypothesis is that the number of books sold according to shop or type of
book does not differ from that expected by chance.

3.

�Statistics �Summarize �Crosstabs… �book ��button [puts book under
Row[s]:] �shop ��button [puts shop under Column[s]:] �Cells… �Expected
[in Counts section] �Continue �Statistics… �Chi-square �Continue �OK   

4. We would use a two-tailed level of significance in this case and in others involving a
comparison of three or more cells since it is not possible to determine the direction of
any differences as all differences have been made positive by being squared.
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5. Since the value of 0.25 is greater than the conventional criterion or cut-off point of
0.05, we would conclude that the number of books sold did not differ significantly
according to shop or type of book. A probability value of 0.25 means that we could
expect to obtain this result by chance one out of four times. To be more certain that
our result is not due to chance, it is customary to expect the finding to occur at or less
than five times out of a hundred.

6. A finding with a probability level of 0.0001 would not mean that there had been a
greater difference in the number of books sold than one with a probability level of
0.037. It would simply mean that the former finding was less likely to occur (once in
ten thousand times) than the latter one (thirty-seven out of a thousand times).

7. A binomial test would be used to determine if there had been a significant difference.

8. If we specify the direction of the difference in the number of books sold between the
two shops, we would use a one-tailed level of significance.

9. You would simply divide the two-tailed level by 2, which in this case would give a
one-tailed level of 0.042.

10. It would be inappropriate to analyze these data with a binomial test since it does
not take account of the number of men and women who reported not having this
experience. In other words, it does not compare the proportion of men with the
proportion of women reporting this experience. Consequently, it is necessary to
use a chi-square test for two samples. Note, however, that it would have been
possible to have used a binomial test if the proportion of people falling in love in
one sample was compared with that in the other. However, it may be simpler to
use chi-square.

11. Since the number of close friends a person has is a ratio measure and the data being
compared come from two unrelated samples (men and women), an unrelated t test
should be used.

12. The pooled variance estimate is used to interpret the results of a t test when the
variances do not differ significantly from one another.

13. You would use a repeated-measure test since the average number of books sold is an
interval/ratio measure which can vary between the ten shops, and the cases (i.e. the
ten shops) are the same for the three time periods.

CHAPTER 8

1. (a)
�Statistics �Summarize �Crosstabs… �prody ��button [puts prody in
Row[s]: box] �gender ��button [puts gender in Column[s]: box] �Cells…
[ensure there is a tick by Observed in the Counts box. Under Percentages
ensure there is a tick by Column.] �Continue �OK   

(b) Taking the sequence in 1(a) before clicking on OK,   

�Statistics �Chi-square �Continue �OK   

(c) With c2=1.183 and p>0.05, the relationship would be regarded as non-signifi-
cant.
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(d) 35.5 per cent.

2. The reasoning is faulty. Chi-square cannot establish the strength of a relationship
between two variables. Also, statistical significance is not the same as substantive
significance, so that the researcher would be incorrect in believing that the presence
of a statistically significant chi-square value indicates that the relationship is
important.

3 (a)

� Statistics �Correlate �Bivariate… � income ��button � years
��button �satis ��button �age ��button �Pearson [if not already
selected] �Flag significant correlations [if not already selected] �One tailed
[if preferred to Two-tailed] �OK   

(b) The correlation is largest between age and years (r=0.81, rounded up).
(c) 66 per cent.

4. There are a host of errors. The researcher should not have employed r to assess the
correlation, since social class is an ordinal variable. The amount of variance
explained is 53.3 per cent, not 73 per cent. Finally, the causal inference (i.e. that
social class explains the number of books read) is risky with a correlational/survey
design of this kind.

5. The statistical significance of r is affected not just by the size of r, but also by the
size of the sample. As sample size increases, it becomes much easier for r to be
statistically significant. The reason, therefore, for the contrast in the findings is that
the sample size for the researcher’s study, in which r=0.55 and p>0.05, is smaller
than the one which found a smaller correlation but was statistically highly
significant.

6. (a) Since these two variables are ordinal, a measure of rank correlation will probably
be most appropriate. Since there are quite a few tied ranks, Kendall’s tau may be
more appropriate than Spearman’s rho.

(b)

�Statistics �Correlate �Bivariate… � prody ��button � commit
��button �Kendall’s tau-b [if not already selected] �Flag significant
correlations �One tailed [if preferred to Two-tailed] �OK   

(c) tau=0.25, p=0.011. This suggests that there is a weak correlation but we can be
confident that a correlation of at least this size can be found in the population
from which the sample was taken.  

7. (a) The intercept.
(b) The regression coefficient. For each extra year, autonom increases by 0.0623.
(c) Not terribly well. Only 8 per cent of the variance in autonom is explained by

age.
(d) 10.33.
(e)

� Statistics � Regression � Linear… � autonom ��button next to
Dependent: box �age ��button next to Independent[s]: box �OK   
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CHAPTER 9

1. One advantage is that a more accurate measure of error variance is provided. The
other is to examine interaction effects between the two variables.

2. An interaction is when the effect of one variable is not the same under all the
conditions of the other variable.

3. You would conduct either an analysis of variance (ANOVA) or multivariate analysis
of variance (MANOVA) to determine whether the interaction between the two
variables was significant.

4. Performance is the dependent variable since the way in which it is affected by
alcohol, anxiety and gender is being investigated.

5. There are three factors, i.e. alcohol, anxiety and gender.

6. There are three levels of anxiety.

7. It can be described as a 4×3×2 factorial design.

8.

�Statistics �General Linear Model �GLM—General Factorial… �perform
��button beside Dependent Variable: � alcohol ��button beside Fixed
Factor[s]: �anxiety ��button beside Fixed Factor[s]: ��gender ��button
beside Fixed Factor[s]: �Options… �Descriptive statistics �Homogeneity tests
�Continue �OK   

9. First, you would find out if there were any differences in intelligence between the
three conditions, using one-way analysis of variance. If there were no significant
differences, then you could assume that the effect of intelligence is likely to be equal
in the three conditions and that there is no need to control for it statistically. If you
had found that there were significant differences in intelligence between the three
conditions, you would need to determine if there was any relationship between
intelligence and the learning-to-read measure. If such a relationship existed, you
could control for the effect of intelligence by conducting an analysis of covariance.

10.  

�Statistics �General Linear Model �GLM—General Factorial… �read
��button beside Dependent Variable: �method ��button beside Fixed Factor
[s]: � intell ��button beside Covariate[s]: �Options… �read ��button
�Continue �OK   

11. It is a between-subjects design with multiple measures.

12.

� Statistics � General Linear Model � GLM—Multivariate… � intell
��button beside Dependent Variables: �likeable ��button beside Dependent
Variables: �honesty ��button beside Dependent Variables: �confid ��button
beside Dependent Variables: �attract ��button beside Fixed Factor [s]:
�Options… �Descriptive statistics �Residual SSCP matrix �Homogeneity
tests �Continue �OK   
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CHAPTER 10

1. To a large extent, in that 71 per cent of women support equal pay legislation, as
against 58 per cent of men.

2. Table 10E.2 suggests that the relationship between sex and approval for equal pay
legislation is moderated by age. For respondents under the age of 35, there is greater
overall support for legislation, and the difference between men and women is greater
than in Table 10E.1. Among those who are 35 and over, the overall level of approval
is lower and the difference between men and women is much less than in Table
10E.1. Clearly, the relationship between sex and approval for equal pay legislation
applies to the under-35s in this imaginary example, rather than those who are 35 or
over.

3.

�Statistics �Summarize �Crosstabs… �commit ��button by Row[s]:
� ethnicgp ��button by Column[s]: � gender ��button by bottom box
�Cells… [ensure there is a tick by Observed in the Counts box. Under Percentages
ensure there is a tick by Column] �Continue �OK   

4. The main possibility is that the relationship between income and attendance at
religious services is spurious. Age is probably related to both income and attendance.
However, it should also be noted that the relationship between income and attendance
does not disappear entirely when age is controlled.

5.

�Statistics �Correlate �Partial �income ��button by Variables: box �satis
��button by Variables: box �age ��button by Controlling for: box �Two-
tailed or One-tailed depending on which form of Test of Significance you want and
ensure Display actual significance level has been selected �Options… �Exclude
cases listwise �Continue �OK   

If you follow this sequence, the partial correlation between income and satis
(controlling for age) is 0.55. The zero-order correlation is 0.62, suggesting that the
relationship between income and satis is largely unaffected by age.

6. (a) 94.4.
(b) 78 per cent. The multiple coefficient of determination (R2) suggests that a large
proportion of y is explained by the three variables (78 per cent), and the equation as
a whole is statistically significant, suggesting that the multiple correlation between
the three independent variables and y is unlikely to be zero in the population.
(c) This was a trick question. Since the three regression coefficients presented in the
equation are unstandardized, it is not possible to compare them to determine which
independent variable has the largest effect on y. In order to make such an inference,
standardized regression coefficients would be required.
(d) For every one unit change in x

3
, y decreases by 1.4.

7. Equation (1):

�Statistics �Regression �Linear… �satis ��button next to Dependent: box
�autonom ��button next to Independent [s]: box �routine ��button next to
Independent [s]: box �downward pointing arrow in box by Method: �Enter �OK
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Equation (2):   

�Statistics �Regression �Linear… �absence ��button next to Dependent:
box �autonom ��button next to Independent[s]: box �routine ��button next
to Independent[s]: box � satis � �button next to Independent[s]: box
�downward pointing arrow in box by Method: �Enter �OK   

8 (a) According to the adjusted R2, 59 per cent of the variance in satis is explained by
autonom and routine.

(b) Yes. The t values for autonom and routine are significant at p<0.000 and p<
0.002 respectively.

(c) -0.293.

9. The largest effect coefficient is for satis (-0.50). The effect coefficients for autonom
and routine respectively were -0.115 and -0.02.

CHAPTER 11

1. No. If you were to do this, you would be examining the way in which your anxiety
items were grouped together. In other words, you may be analyzing the factor
structure of anxiety itself. To find out if your ten items assessed a single factor of
anxiety, you would need to include items which measured at least another variable
such as sociability.

2. At least 50–100 cases.

3. This is the variance which is not shared with other variables.

4. Principal-components analysis analyzes all the variance of a variable, while
principal-axis factoring analyzes the variance it shares with the other variables.

5. There are as many factors as variables.

6. The first factor always accounts for the largest amount of variance.

7. This would defeat the aim of factor analysis which is to reduce the number of
variables which need to be examined. The smaller factors may account for less
variance than that of a single variable.

8. Kaiser’s criterion which extracts factors with an eigenvalue of greater than one.

9. A loading is a measure of association between a variable and a factor.

10. Factors are rotated to increase the loading of some items and to decrease that of
others so as to make the factors easier to interpret.

11. The advantage of orthogonal rotation is that since the factors are uncorrelated with
one another, they provide the minimum number of factors required to account for the
relationships between the variables.

12. No. Since the variance may be shared between two or more factors, it is not possible
to estimate it.
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binomial test 118, 119–21, 124; generation

of with SPSS 119–20
Binomial Test dialog box 119–20
bivariate analysis 6, 57, 164; and

differences 115–62; and relationships
164–202

Bivariate Correlations dialog box 185–6,
187

Bivariate Correlations: Options dialog
box 186

Blauner, R. 68
Bohrnstedt, G.W. 74
Boneau, C. 119
Bonferroni test 161
boxplot 91–2; generation of with SPSS 90,

92
Box’s M test 222–3

Brayfield, A. 57, 63, 65
Bridgman, P.W. 4
Browse subdialog box 32, 34
Bryman, A. 1, 5, 7, 16, 63, 69
 
Cammann, C. 69
Campbell, D.T. 68–9
case, notion of in SPSS 19
Castellan, C.J. 119, 147, 149
categorical variable see nominal variable
Cattell, R.B. 272, 277
causality, concept of 7–15, 181–2, 235,

263–4, 268
central tendency, concept of 81, 83
Child, J. 56, 178, 198
chi-square test (?2): and contingency table

analysis 188, 201–2; generation of with
SPSS 173; one sample 118, 121–4, 127
(generation of with SPSS 122); two or
more unrelated samples 118, 124–8
(generation of with SPSS 125–6);
Yates’s correction 127–8, 175

Chi-Square Test dialog box 122
Cochran Q test 118, 130–1; generation of

with SPSS 130
coefficient of determination (r2) 181–2,

195–6, 199, 256
Cohen, L. 181
combined design 211, 227–31
common variance, in factor analysis 274–5
communality, concept of in factor analysis

274–5
comparison group 116; related 116–17;

unrelated 116–17
comparison group variable 115
Compute Variable dialog box 50–1, 214

Index

Entries in bold are SPSS procedures and dialog boxes.
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computing new variables 50–3
concepts, measurement of 4, 7, 55–6; see

also dimensions of concepts
concepts, nature of 3–4, 55
Conover, W.J. 119
contingency table analysis: and bivariate

analysis 104, 165–75, 188, 201–2
(generation of with SPSS 168–71); and
multivariate analysis 236–47 (generation
of with SPSS 245, 247)

contrasts, in analysis of variance 150–2
control group 5–6, 10–12
correlated groups see dependent groups
correlation: concept of 5, 59, 175–88; linear

176–83; rank 176, 186–8, 190; see also
Kendall’s tau; Pearson’s product
moment correlation coefficient; phi
coefficient; Spearman’s rho

covariance, analysis of see analysis of
covariance

covariate, in multivariate analysis of
variance and covariance 209

covariate design 209–10, 216–20
Cramer, D. 14–15, 68, 220
Cramer’s V 189, 201–2; generation of with

SPSS 189
criterion variable 115, 209
Cronbach, L.J. 68
Cronbach’s alpha 65, 217; generation of

with SPSS 65–7
Crosstabs dialog box 125–6, 169, 173, 247
Crosstabs: Cell Display subdialog box

126, 169–70, 174, 247
Crosstabs: Statistics subdialog box 126,

169–70, 173, 175, 189
crosstabulation 165–75
 
Data Editor 19, 22; entering data in 24–5;

naming variables in 25; saving data in
29, 31–2

data files 17–21
Davis, J.A. 268
decile range 85
Define Column Format subdialog box

28, 30
Define Fixed Variables dialog box 32, 34
Define Groups subdialog box 144, 147
Define Labels subdialog box 28–9
Define Missing Values subdialog box 26–7
Define Pie: Summaries for Groups of

Cases subdialog box 79–80

Define Simple Bar: Summaries for
Groups of Cases subdialog box 78–9

Define Variable dialog box 24–5
Define Variable Type subdialog box 26–7
degrees of freedom, concept of 123, 127,

173
dependent groups 117
dependent variable 7, 15, 168, 197, 207,

209
Depression Project: data 212; description

211
Descriptives dialog box 35
Descriptives: Options subdialog box 35–6
design see combined design; experimental

design; factorial design; mixedbetween-
within design ; multiple measures
design; panel design; survey/
correlational design

dialog box 16, 22
dichotomous variable 59–60, 188–9, 202,

255
differences, examination of 6, 115, 164
dimensions of concepts 60–4
disks 29; formatting 29, 31
dispersion, concept of 83
distribution-free tests see non-parametric

tests
distributions see binomial distribution;

normal distribution; t distribution
Durkheim, E. 4
 
eigenvalue, concept of in factor analysis 276
error term 264–5
error variance, in factor analysis 274
eta 189; generation of with SPSS

189–90
expected frequencies, concept of 172, 174
experimental design 4–6, 9–13, 209, 212,

234; types of 11–12, 212–13
Explore dialog box 86–7
Eysenck, H.J. 272
Eysenck, S.B.G. 272
 
F test 147, 150, 161, 199, 256–7
factor, concept of in multivariate analysis of

variance 157–8, 206
Factor Analysis dialog box 281–3
factor analysis, exploratory 62, 64,

271–84; compared with confirmatory
factor analysis 272; generation of with
SPSS 281–4; orthogonality in 279–80;
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rotation of factors in 278–81; selecting
number of factors in 276–8; uses of see
also oblique rotation; orthogonal
rotation; varimax rotation

Factor Analysis: Descriptives subdialog
box 282–3

Factor Analysis: Extraction subdialog box
283–4

Factor Analysis: Options subdialog box
284

Factor Analysis: Rotation subdialog box
283–4

factorial design 12, 204–9, 211–16, 234–5
Fiddell, L.S. 212–13
file names 29–32
Fiske, D.W. 68–9
Format Disk dialog box 29, 31
Freeman, L.C. 188
Frequencies dialog box 77, 96
Frequencies: Statistics subdialog box 96–7
frequency distributions, tables 71–4, 86;

generation of with SPSS 77–8
frequency, relative 71
Friedman test 118, 140–1; generation of

with SPSS 141

 
Games, P. 119
GLM—General Factorial dialog box

213–14, 218–19
GLM—General Factorial: Model

subdialog box 218–19
GLM—General Factorial: Options

subdialog box 213–15, 219
GLM—Multivariate dialog box 221
GLM—Multivariate: Options dialog box

221–2
GLM—Repeated Measures subdialog box

158–9, 225–6, 229
GLM—Repeated Measures Define

Factor[s] dialog box 158–9, 225, 228–9
GLM—Repeated Measures: Options

subdialog box 158–60, 227, 229–31
Glock, C.Y. 56
Gorsuch, R.L. 273
Gould, S.J. 81–2
Goyder, J. 104

 
Hall, R.H. 61–4
Help information box 37
Help Topics dialog box 38
heteroscedasticity 197
Hirschi, T. 2–5

histogram 74–5, 88, 91; generation of with
SPSS 78

Holliday, M. 181
Huff, D. 1
Huitema, B. 217
hypothesis 3–4, 6–7, 55; directional 111;

nondirectional 110–11; null 110, 172

 
icon 22
independence, concept of 171
independent groups 116–17
Independent-Samples T Test dialog box

143–4, 147
independent variable 7, 15, 168, 197, 206–7,

247
indicator, nature of an 56, 62
inferential statistics 4–5
interaction effect see interaction, statistical
interaction, statistical: concept of 204–6,

243; see also moderated relationship
internal validity 10, 12; see also causality
inter-quartile range 84–5, 91; generation of

with SPSS 87
interval variable 58–60, 73–4, 86, 116–17,

128, 175–6, 188–9, 248
intervening variable 239, 241
 
Jenkins, G.D. 69
Job Survey: general description of 17–21;

questionnaires 40–1; raw data 18–19;
variables 21

Jöreskog, K.G. 272
 
Kaiser’s criterion 276–7
Kendall’s tau (t) 186–7, 202; compared with

Spearman’s rho 186–7; generation of
with SPSS 187

Knoke, D. 74
Kolmogorov-Smirnov test: for one sample

118, 131–4 (generation of with SPSS
131–2); for two unrelated samples
133–4 (generation of with SPSS 133)

Kruskal-Wallis H test 118, 137–8;
generation of with SPSS 137–8

 
Labovitz, S. 59
Land, K.C. 268
Lawler, E.E. 69
Lazarsfeld, P.F. 61–3
leaving SPSS 39
Levene’s test 118, 145, 153–4, 213–14,

222–3
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Likert scaling 56–7
line of best fit 192–200
Linear Regression dialog box 199–200,

258–9, 265–6
Linear Regression: Options subdialog box

259
Linear Regression: Statistics subdialog

box 258–9
listwise deletion see missing data
Locke, E.A. 5
logarithmic transformation 178, 214, 217
logical operators 44–5
Lord, F.M. 117
Lucas, P. 119

 
McNemar, Q. 156
McNemar test 118, 128–30; generation of

with SPSS 128–9
manipulation of variables 5, 13, 206–7
Mann-Whitney U test 118, 136–7, 145, 147;

generation of with SPSS 136–7
marginals: column 165; row 165
Maxwell, S.E. 161
mean, arithmetic 32, 35, 81–2, 93;

generation of with SPSS 35–7, 42, 87
Means dialog box 190–1
Means: Options subdialog box 190–1
Means procedure 189–92, 202
median 82–3, 85, 91, 93; generation of with

SPSS 87
median test 118, 134–6; generation of with

SPSS 135–6
Meehl, P.E. 68
menu 16, 22
Merton, R.K. 2
missing data, values 20, 26, 51–3; listwise

deletion 186, 259; pairwise deletion 186
Mitchell, T.R. 104
mixed between-within design 210–11
mode 83
moderated relationship 241, 243, 247
Mosteller, F. 119
mouse 16, 21–2
multicollinearity 254, 259, 262–3
multiple causation 243, 245
multiple coefficient of determination (R2)

256–7
multiple correlation (R) 256–7, 262–3
multiple-item measures 56–7, 59, 65–8, 188
multiple measures design 210, 220–5
multiple regression see regression,

multiple

multivariate analysis, concept of 6–7, 204,
234–5

multivariate analysis of variance and
covariance (MANOVA) and
(MANCOVA) 204; classical
experimental approach 213;
hierarchical 212; regression approach
212–13; and statistical significance
214–15; see also combined design;
covariate design; factorial design;
mixed between-within design; multiple
measures design

Murray, I. 88

 
Nadler, D.A. 69
new variable, creating a 50–1
nominal variable 19, 57–60, 71, 86, 116,

128, 175, 188–9, 201–2
non-parametric tests, concept of 93, 116–19,

153, 186
normal distribution 93–7, 117, 143, 256
null hypothesis see hypothesis, null
 
O’Brien, R.M. 176
oblique rotation, in factor analysis 279–81
One-Sample Kolmogorov-Smirnov Test

dialog box 131–2
One-Sample T Test dialog box 142
One-Way ANOVA dialog box 149–50
One-Way ANOVA: Contrasts subdialog

box 151–2
One-Way ANOVA: Options subdialog box

150–1, 153
One-Way ANOVA: Post Hoc Multiple

Comparisons subdialog box 152–3
Open File dialog box 32–3
operationalization 4, 55; see also concepts,

measurement of
order effect 210–11
ordinal variable 58–60, 74, 86, 116, 128,

145, 147, 175, 187–9, 202
orthogonal rotation, in factor analysis

279–80
outliers, importance of: in regression

198–9; in univariate analysis 82–3,
85–6, 90, 92

 
Paired-Samples T Test dialog box 156
pairwise deletion see missing data
panel design 14
Panel Study: general description of 128;

raw data 128
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parametric tests 93, 116–19, 141–57, 204
partial correlation coefficient 247–52; and

Pearson’s r 247–8; generation of with
SPSS 250–2

Partial Correlations dialog box 250–2
Partial Correlations: Options subdialog

box 251–2
participants 17
path analysis 263–8; generation of with

SPSS 265–6; overall effects of variables
in 266–7

Pearson’s product moment correlation
coefficient (Pearson’s r) 176–88, 191,
202, 247–8; generation of with SPSS
183–6; and statistical significance 183

Pedhazur, E.J. 267–8
percentages: in contingency tables

165–8; in frequency distributions,
tables 72

phi coefficient 175, 188–9, 202; generation
of with SPSS 189

pie chart 78–80, 86; generation of with
SPSS 80–1

Pie Charts dialog box 80
population, concept of 99
power, statistical 113
principal components analysis: compared

with factor analysis 273–6; generation of
with SPSS 281–4

printing output 37
probability, concept of 105–10
probability sampling see sampling,

probability
psychology 17

 
qualitative research 1, 7
quantitative research 1–7

 
random assignment 11–12, 209, 234
range 84, 86; generation of with SPSS 87
ratio variable 58
Recode into Different Variables dialog

box 46–7
Recode into Different Variables: Old

and New Values subdialog box 46–7,
75–7

Recode into Same Variables dialog box
47, 49, 53

Recode into Same Variables: Old and
New Values subdialog box 47, 49

recoding variables 45–50, 75–7, 188
record 20

regression, bivariate 191–202; compared
with correlation 195–6; generation of
with SPSS 199–201; intercept in 193;
regression coefficient 193; use of in
prediction 193–5

regression, multiple 252–63; coefficients
252–4; generation of with SPSS 258–63;
and prediction 253–4; and statistical
significance 256–7; stepwiseprocedure in
255, 257, 259–62; see also standardized
regression coefficient

relational operators 44
relationship: concept of 6, 164–5;

curvilinear 178–9; first order 235, 249,
252; negative 176, 179–81; perfect
178–9, 182, 196; positive 176, 179–81;
second order 235, 252; strength of
174–5, 179; zero order 235, 249, 252

relationships, compared to examination of
differences 164

Reliability Analysis dialog box 65–6
Reliability Analysis: Statistics subdialog

box 66
reliability of measures: concept of 64–8;

external 64–5; generation of with SPSS
65–7; inter-coder 67–8; internal 64–6;
inter-observer 67–8; split-half 65; test-
retest 64–5; see also Cronbach’s alpha

repeated measures 117, 157, 210
respondents 17
retrieving saved data 32
Rosenberg, M. 235
Rothe, H. 57, 63, 65

 
sample: convenience 104–5; multistage

cluster 103; representative 100; simple
random 100–1, 103; stratified 101–3;
systematic 101

sampling: concept of 4–5, 99–100; error
103–4, 171–2, 183; frame 100;
probability 100; problems in 103–5

Save Data As dialog box 31–2
saving data 31–2
scatter diagram 176–81, 192; generation of

with SPSS 183–6
Scatterplot dialog box 184, 200
Scatterplot Options subdialog box 200
Scheffé test 152–4, 216; generation of with

SPSS 153
Schweiger, D.M. 5
scree test 277
Select Cases dialog box 42–3
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Select Cases: If subdialog box 42–3
selecting cases 42–4
Several Independent Samples: Define

Range subdialog box 135, 138
Siegel, S. 119, 147, 149
sign test 118, 138–9; generation of with

SPSS 139
significance level 106–7, 111–12
significance, statistical see statistical

significance
Simple Scatterplot subdialog box 184, 200
skewed distributions 96
Snizek, W.E. 63–4
sociology 1, 5, 17
Sörbom, D. 272
Spearman’s rho (?) 186–8, 202; compared

with Kendall’s tau 186–7; generation of
with SPSS 187

specific variance, in factor analysis 274
SPSS, versions of 16
spurious relationship 234, 236–9, 247
standard deviation 35, 85–6, 94–5, 145;

generation of with SPSS 35, 37
standard error of the estimate 256
standard error of the mean 143
standard error of the regression coefficient

256
standardized regression coefficient 253–5,

265; generation of with SPSS 258–63; in
multiple regression 253–5

Stark, R. 56
statistical power see power, statistical
statistical significance: concept of 99, 105–13,

115, 171–3; one-sample test of 109; one-
tailed test of 111–12; robustness of test of
119; two-tailed test of 111–12

stem and leaf display 88–91; generation of
with SPSS 90

Stevens, J. 220, 227
Stevens, J.P. 158
Stevens, S.S. 57, 145, 161–2
subdialog box 25
Summarize Cases dialog box 47–8
survey/correlational design 3–6, 9–10,

13–15, 234
survey research 7, 13, 15; non response in

104–5; see also survey/correlational
design

 
Tabachnick, B.G. 212–13
Template dialog box 28, 30
test variable, in multivariate analysis 235

Tests for Several Related Samples dialog
box 130, 141

Tests for Several Independent Samples
dialog box 135, 137–8

theory, in quantitative research 2–3, 6–7,
164

t distribution 109
t test 118; for one sample 118, 141–3; for

two related means 155–6, 161–2; for
two unrelated means 118, 143–5; for
two related variances 156–7; unrelated
145, 147, 151, 155, 216, 225

Tukey, J.W. 87, 119
Tukey test 161–2
Two-Independent-Samples Tests dialog

box 133, 136
Two Independent Samples Tests: Define

Groups subdialog box 133–4
Two-Related-Samples Tests dialog box

128–9, 139–40
Type I error 108, 112–13, 152, 172, 221
Type II error 108, 112–13
 
uncorrelated groups see independent groups
unique variance, in factor analysis 274
univariate analysis, concept of 6, 57
 
validity of measures: concept of 68–9, 88;

concurrent validity 68; construct validity
68; convergent validity 68–9;
discriminant validity 69; face validity
68; predictive validity 68

value labels 28, 77
variable: nature of a 4, 57; types of 57–60
variable labels 28
variable names in SPSS 25–6
variable type 26
variance: analysis of see analysis of

variance; concept of 116, 145; error 147,
149; explained 147, 149; pooled 145,
152; residual 147, 149; separate 145, 152

varimax rotation, in factor analysis 279–80
Viewer window 35
 
Walker, H. 123
Wilcox, R.R. 119
Wilcoxon matched-pairs signed-ranks test

118, 139–40; generation of with SPSS
140

within-subjects design 117
Windows 95 16, 22
Windows system 16, 22



Appendix
SPSS Release 9.0

A small number of differences between Release 8.0 and Release 9.0, which are
of some significance for readers of this book using Release 9.0, can be found.
These differences relate to the Statistics option on the menu bar and some of its
sub-options.

1 Statistics in Release 8.0 is called Analyze in Release 9.0.
2 Summarize in Release 8.0 is divided into Reports and Descriptive Statistics in

Release 9.0.
3 Case Summaries in Release 8.0 is under Reports in Release 9.0.
4 The GLM—General Factorial…option in Release 8.0 is called Univariate…in

Release 9.0.
5 The GLM—Multivariate…option in Release 8.0 is called Multivariate…in

Release 9.0.
6 The GLM—Repeated Measures…option in Release 8.0 is called Repeated

Measures…in Release 9.0.
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